Thèse soutenue

Optimisation de la cristallisation et des propriétés cinétiques et thermophysiques des coulis d’hydrates de CO2 appliqués à la réfrigération secondaire

FR  |  
EN
Auteur / Autrice : Amokrane Boufares
Direction : Didier Dalmazzone
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 12/12/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : UCP - Unité Chimie et Procédés
établissement opérateur d'inscription : École nationale supérieure de techniques avancées (Palaiseau ; 1970 -....)
Jury : Président / Présidente : Daniel Broseta
Examinateurs / Examinatrices : Bertrand Chazallon, François Puel, Laurence Fournaison, Anthony Delahaye, Elise Provost, Pascal Clain
Rapporteurs / Rapporteuses : Bertrand Chazallon, François Puel

Résumé

FR  |  
EN

L'utilisation des coulis d'hydrates de CO2 comme fluides frigoporteurs dans le procédé de réfrigération secondaire permet de réduire l'impact environnemental des systèmes frigorifiques qui sont responsables d'importants rejets de gaz à effet de serre. Ces fluides sont également intéressants du point de vue de l'efficacité énergétique grâce à leur chaleur latente de changement de phase élevée et du point de vue de la variété des applications industrielles, la température de changement de phase pouvant être ajustée dans une large gamme. Afin d'assurer un contrôle optimal du procédé, la compréhension de la cinétique de formation des hydrates de CO2 et la maitrise de l’écoulement des coulis sont importantes.Pour l'étude cinétique, un protocole de mesure in-situ par spectroscopie Infra Rouge à Transformée de Fourier a permis de suivre en temps réel la concentration du CO2 en phase aqueuse dans un réacteur agité en conditions de formation d'hydrates. Ces mesures ont permis de quantifier la force motrice de la croissance cristalline, d’alimenter un modèle de calcul de la consommation en temps réel du CO2 lors de la formation des hydrates et d'identifier le transfert de matière à l’interface gaz/liquide comme l’étape limitante du processus. Le modèle semi-empirique de transfert de matière développé pour déterminer la vitesse de consommation du CO2 par les hydrates s’appuie sur l’étape limitante de transfert de matière à l’interface gaz/liquide dans certaines conditions. Par ailleurs, différents moyens pour améliorer la cinétique de cristallisation des hydrates de CO2 ont montré des résultats intéressants concernant l’évolution des paramètres opératoires (consommation de gaz/gaz dissous).Pour l’étude des écoulements, une caractérisation rhéologique et granulométrique des coulis d’hydrates de CO2 dans une boucle dynamique a été menée sur une gamme de fractions volumiques en solide comprise entre 7 à 14 %. Pour ce faire, les évolutions de pertes de charge en fonction du régime d'écoulement ont été mesurés et ont permis d’obtenir les paramètres du modèle rhéologique. Elles ont été complétées par des déterminations de distributions de tailles des cristaux grâce à une sonde Focused Beam Reflectance Measurement. Deux additifs antiagglomérants ont été testés et ont montré que les coulis d’hydrates présentent un comportement rhéofluidifiant. Par ailleurs, l’évolution en temps réel de la taille des cristaux d’hydrates de CO2 simple et en présence d’additifs ont été obtenues et ont confirmé l’effet d’antiagglomérant et de seuil des additifs testés sur la gamme de fractions en solide étudiée.