Thèse soutenue

L'Étude des Interactions Plasma-Surface en utilisant la Polarimètrie de Mueller

FR  |  
EN  |  
NL
Auteur / Autrice : Elmar Slikboer
Direction : Gerrit Kroesen
Type : Thèse de doctorat
Discipline(s) : Physique des plasmas
Date : Soutenance le 26/11/2018
Etablissement(s) : Université Paris-Saclay (ComUE) en cotutelle avec Technische hogeschool (Eindhoven, Pays-Bas)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire de physique des plasmas (Palaiseau, Essonne ; 1997-....)
Jury : Président / Présidente : E.J.E. Cottaar
Examinateurs / Examinatrices : Gerrit Kroesen, Olivier Guaitella, Ana Sobota, Enrique Garcia-Caurel
Rapporteurs / Rapporteuses : François Goudail, Erwin Kessels, Ronny Brandenburg

Résumé

FR  |  
EN

Cette thèse examine une nouvelle méthode de diagnostic, appelée Polarimètrie de Mueller, pour l’étude des interactions plasma-surface. Cette technique d’imagerie permet la caractérisation optique résolue en temps des cibles exposées au plasma. Les matrices de Mueller mesurées sont analysées en utilisant la décomposition logarithmique donnant des informations polarimétriques sur la diattenuation, la dépolarisation et la biréfringence. Cette dernière est exploitée en examinant des matériaux optiquement actifs afin d’identifier des aspects spécifiques de l’interaction avec le plasma, tels que les champs électriques ou la température de surface.Ce travail se concentre sur les cibles électro-optiques, qui permettent principalement la détection de champs électriques induits par la charge de surface déposée lors de l’interaction. La biréfringence est couplée analytiquement au champ électrique, en rapportant le retard de phase du faisceau sonde de lumière polarisée, à l’ellipsoïde d’index perturbé suivant l’effet Pockels. Grâce à cette approche analytique, les matériaux ayant des propriétés électrooptiques spécifiques peuvent être choisis de telle manière que toutes les composantes individuelles de champ électrique (axiales et radiales) induites à l’intérieur de l’échantillon soient imagées séparément. Pour la première fois les composantes du champ électriques peuvent être découplées permettant de mieux comprendre la dynamique du plasma proche d’une surface diélectrique.Cette technique est utilisée pour étudier l’impact d’ondes d’ionisation sur des surfaces. Ces décharges, générées par un jet de plasma à pression atmosphérique dans la gamme kHz, sont des plasmas froids filamentaires généralement utilisés pour des applications diverses telles que la fonctionnalisation de surface de polymères ou des traitements biomédicaux, mais les méthodes de diagnostic disponibles pour étudier les effets induits sur les surfaces sont limités. L’imagerie de polarimètrie Mueller appliquée aux cibles électro-optiques permet d’examiner les champs axiaux et radiaux en termes d’amplitude (3-6 kV/cm), d’échelles spatiales (<1mm axiales and <1cm radiales) et d’échelles temporelles (< 1μs pulsée and < 10μs CA) pour divers paramètres de fonctionnement du jet, e.g. amplitude de tension et gaz environnant.Simultanément à la biréfringence transitoire induite par le champ électrique, un signal de fond constant est également observé. Il est induit par la contrainte résultante du gradient de température induit à l’intérieur du matériau ciblé. Une relation analytique est obtenue en utilisant l’effet photo-élastique, permettant de développer une procédure de fitting pour retrouver la distribution de température. Cette procédure est utilisée, après calibration, pour montrer que la température de l’échantillon peut varier jusqu’`a 25 degrés par rapport aux conditions ambiantes – tandis que les changements dans le champ électrique sont également mesurés – et dépend de la fréquence de la tension d’alimentation AC du jet de plasma. La détermination précise de la température induite dans les cibles est importante car la plupart des applications visent des échantillons thermosensibles.Enfin, ce travail montre comment des échantillons complexes (aussi bien en terme d’état de surface que de composition chimique) peuvent être examinés lors d’une interaction plasma-surface, en les combinant avec une cible électrooptique. En raison de l’ajout d’un échantillon complexe, une composante de dépolarisation est ajoutée due à la diffusion du faisceau lumineux polarisé. Les changements de dépolarisation sont liés à l’évolution de l’échantillon complexe au cours du traitement par plasma. Ceux-ci, couplés aux champs électriques mesurés simultanément, fournissent un outil de diagnostic unique pour examiner les interactions plasma-surface. Cela a été appliqué à un cas test où une seule couche de cellules d’oignon est exposée aux ondes d’ionisation générées par le jet de plasma froid.