Contribution des électrons cinétiques dans les plasmas de Tokamak
Auteur / Autrice : | Charles Ehrlacher |
Direction : | Jean-Marcel Rax, Yanick Sarazin |
Type : | Thèse de doctorat |
Discipline(s) : | Physique des plasmas |
Date : | Soutenance le 12/07/2018 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ondes et matière (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....) |
Laboratoire : Laboratoire d'Optique Appliquée (Palaiseau) | |
Jury : | Président / Présidente : Etienne Gravier |
Examinateurs / Examinatrices : Jean-Marcel Rax, Yanick Sarazin, Pierre Morel, Virginie Grandgirard | |
Rapporteur / Rapporteuse : Peter Beyer |
Mots clés
Mots clés libres
Résumé
Les plasmas de fusion par confinement magnétique sont le siège d'instabilités qui développent des structures turbulentes d'échelles milli- à centi-métriques. Le transport qui en résulte contrôle le temps de confinement de l'énergie et, in fine, les performances énergétiques.Dans les régimes de confinement non améliorés, c'est une turbulence à l'échelle ionique qui domine ce transport. Cette turbulence est portée par les ions, mais également par une certaine classe d'électrons, ceux qui sont piégés dans les miroirs locaux du champ magnétique. Il est de fait important de prendre en compte leur dynamique, d'autant plus qu'ils sont également responsables du transport de matière.L'objectif de la thèse consiste à étudier l'impact des électrons d'une part, sur l'amortissement des ''Geodesic Acoustic Modes'' (GAM) d'une part, et sur la croissance linéaire des modes de turbulence ''Ion Temperature Gradients'' (ITG) et ''Trapped Electron Modes'' (TEM) d'autre part.Les GAMs sont des oscillations à la fréquence acoustique du potentiel électrique moyen sur les surfaces magnétiques. Ils interagissent de façon critique avec la micro-turbulence au travers notamment de leur couplage au mouvement des particules énergétiques du plasma. Les ITG et TEM représentent les 2 classes d'instabilités électrostatiques dominantes dans le cœur des plasmas de tokamak. Elles sont à ce titre supposées contrôler le transport turbulent de cœur.Cette étude est donc une étape préliminaire pour la prédiction du transport turbulent en prenant en compte l'influence des électrons.Le cadre approprié pour décrire cette turbulence est la théorie dite ''gyrocinétique'', qui procède d'une réduction de l'espace des phases de 6 dimensions (6D) à 4D + 1 invariant par une moyenne sur le mouvement rapide cyclotronique. Le problème auto-consistant couple l'équation gyrocinétique pour chaque espèce (ions et électrons) aux équations de Maxwell.Le développement de ce modèle cinétique, construit comme une extension autonome du code extsc{Gysela} dont la version de base donne une réponse adiabatique aux électrons, consiste à ajouter le traitement de la fonction de distribution des électrons. Leur prise en compte est coûteuse du point de vue des ressources numériques. Trois stratégies sont envisagées pour réduire ce coût: (i) considérer des ''électrons lourds'', (ii) filtrer les électrons et ne retenir que ceux qui sont piégés, et (iii) adapter les coordonnées pour découpler les dynamiques parallèle (rapide) et transverse (lente) au champ magnétique.Après une présentation du modèle gyrocinétique et des caractéristiques du code extsc{Gysela}, nous présentons le modèle des électrons adiabatiques tel qu'il est implémenté dans extsc{Gysela} et introduisons deux nouveaux modèles: le modèle ''Full Kinetic Electrons'' dans lequel les électrons sont considérés comme une espèce cinétique et sont traités de la même façon que les ions et le modèle ''Trapped Kinetic Electrons'' dans lequel seuls les électrons piégés sont cinétiques, les électrons passants reçoivent quant à eux un traitement adiabatique. On constate que les électrons engendrent un sur-amortissement des GAM lié à une intéraction résonante entre la fréquence de rebond de certains électrons piégés et celle des GAMs.Cet amortissement dépend du rapport de masse électron-ion et évolue en (m_i/m_e)^{-1/2}. Pour les simulations linéaires sur l'instabilité d'interchange, on retrouve que les modes ITG sont dominants sur les modes TEM pour des forts gradients de température ionique et vice versa, à profil de température électronique fixé. Un accord satisfaisant est obtenu avec le code gyrocinétique GT5D dont les résultats viennent d'être publiés. Enfin, nous proposons quelques méthodes pour construire des cas non linéaires qui permettront d'étudier l'influence des électrons cinétiques sur le transport turbulent.