Modèles non linéaires pour les séries temporelles neurophysiologiques
Auteur / Autrice : | Tom Dupré la Tour |
Direction : | Yves Grenier |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du signal et des images |
Date : | Soutenance le 26/11/2018 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Télécom Paris (Palaiseau, Essonne ; 1878-....) |
Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....) | |
Jury : | Président / Présidente : Éric Moulines |
Examinateurs / Examinatrices : Yves Grenier, Alexandre Gramfort, Maureen Clerc, Mike X. Cohen | |
Rapporteurs / Rapporteuses : Guido Nolte, Dimitri Van De Ville |
Mots clés
Résumé
Dans les séries temporelles neurophysiologiques, on observe de fortes oscillations neuronales, et les outils d'analyse sont donc naturellement centrés sur le filtrage à bande étroite.Puisque cette approche est trop réductrice, nous proposons de nouvelles méthodes pour représenter ces signaux.Nous centrons tout d'abord notre étude sur le couplage phase-amplitude (PAC), dans lequel une bande haute fréquence est modulée en amplitude par la phase d'une oscillation neuronale plus lente.Nous proposons de capturer ce couplage dans un modèle probabiliste appelé modèle autoregressif piloté (DAR). Cette modélisation permet une sélection de modèle efficace grâce à la mesure de vraisemblance, ce qui constitue un apport majeur à l'estimation du PAC.%Nous présentons différentes paramétrisations des modèles DAR et leurs algorithmes d'inférence rapides, et discutons de leur stabilité.Puis nous montrons comment utiliser les modèles DAR pour l'analyse du PAC, et démontrons l'avantage de l'approche par modélisation avec trois jeux de donnée.Puis nous explorons plusieurs extensions à ces modèles, pour estimer le signal pilote à partir des données, le PAC sur des signaux multivariés, ou encore des champs réceptifs spectro-temporels.Enfin, nous proposons aussi d'adapter les modèles de codage parcimonieux convolutionnels pour les séries temporelles neurophysiologiques, en les étendant à des distributions à queues lourdes et à des décompositions multivariées. Nous développons des algorithmes d'inférence efficaces pour chaque formulations, et montrons que l'on obtient de riches représentations de façon non-supervisée.