Développement d’un microdispositif magnétique pour le contrôle et la détection de complexes immunologiques à base de nanoparticules magnétiques
Auteur / Autrice : | Olivier Lefebvre |
Direction : | Mehdi Ammar |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique et Optoélectronique, Nano- et Microtechnologies |
Date : | Soutenance le 10/12/2018 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Paris-Sud (1970-2019) |
Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....) | |
Jury : | Président / Présidente : Olivier Français |
Examinateurs / Examinatrices : Mehdi Ammar, Olivier Français, Laurent Malaquin, Jean-François Manceau, Yong Chen, Josep Samitier Marti, Claire Smadja | |
Rapporteur / Rapporteuse : Laurent Malaquin, Jean-François Manceau |
Mots clés
Résumé
L’objectif de cette thèse est la fabrication d’un microdispositif magnétique pour la détection et la manipulation d’éléments biologiques à base de nanoparticules magnétiques en conditions microfluidiques. Il a pour but d’intégrer des fonctions de base de contrôle et détection magnétique, pour atteindre des mesures spécifiques, stables, rapides et reproductibles. En effet, la technique d’immunodosage couplée à des nanoparticules magnétiques, bien connue dans la littérature, nécessite un contrôle du déplacement de ces dernières pour les fonctionnaliser efficacement et créer un complexe biologique encapsulant une molécule cible (biomarqueur). Dans notre cas une molécule modèle pour le domaine de la biodéfense a été utilisée : l’ovalbumine. Pour contrôler le champ magnétique nécessaire pour la capture des complexes magnétiques, nous avons opté pour l’utilisation de microbobines intégrées aux dispositifs fluidiques et comparé cette technique originale avec d’autres plus conventionnelles. Pour détecter un complexe biologique, la fluorescence est largement utilisée en biologie, mais cette technique ne permet pas une intégration complète pour un dispositif autonome. Dans cette optique, nous proposons la détection des complexes à base de nanoparticules magnétiques en relevant la variation de l’inductance d’un microcircuit magnétique refermant une chambre microfluidique contenant ces complexes immunologiques. Le dimensionnement des microbobines de contrôle par simulation a permis de déterminer les paramètres permettant d’obtenir le champ magnétique le plus adapté au contrôle des complexes biologiques. Dans le cas des microbobines utilisées pour la détection, des branches magnétiques micrométriques ont été insérées autour des microbobines pour créer un circuit de détection magnétique encore plus sensible. La réalisation de ces dispositifs a impliqué l’intégration de matériaux et de structures de nature fortement hétérogène, et leur assemblage a nécessité de résoudre de nombreux verrous technologiques. L’enjeu a été de déterminer l’ensemble des étapes successives et nécessaires pour un procédé de microfabrication fiable et reproductible. Pour montrer l’intérêt des dispositifs de capture des nanoparticules magnétiques, des tests immunologiques ont été réalisés tout d’abord en microtubes pour les comparer à ceux réalisés dans un circuit fluidique à l’aide d’aimant externe puis de microbobines intégrées. Dans ce dernier cas, une optimisation considérable a été validée en termes de réduction de temps d’incubation, de reproductibilité des mesures et de limites de détection équivalentes à l’état de l’art pour l’ovalbumine. Pour le dispositif de détection magnétique, des premières expériences de caractérisation électrique ainsi que des études en concentration de nanoparticules magnétiques ont été réalisées et comparées aux résultats obtenus par simulation. Pour la preuve de concept, un démonstrateur de détection de complexes magnétiques a été également finalisé validant la possibilité d’intégration du microcircuit magnétique dans un dispositif fluidique. Il a validé également l’obtention d’une gamme de sensibilité remarquable corrélée à la présence des complexes magnétiques. Ses caractéristiques ont été confrontées à celles obtenues par les simulations et discutées en tenant compte de toutes les étapes critiques du procédé de microfabrication.