Thèse soutenue

Vérification par model-checking de programmes concurrents paramétrés sur des modèles mémoires faibles

FR  |  
EN
Auteur / Autrice : David Declerck
Direction : Fatiha Zaïdi
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 24/09/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020)
: Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Philippe Dague
Examinateurs / Examinatrices : Fatiha Zaïdi, Philippe Dague, Ahmed Bouajjani, Dominique Méry, Sylvain Conchon, Luc Maranget, Philippe Quéinnec
Rapporteur / Rapporteuse : Ahmed Bouajjani, Dominique Méry

Résumé

FR  |  
EN

Les multiprocesseurs et microprocesseurs multicœurs modernes mettent en oeuvre des modèles mémoires dits faibles ou relâchés, dans dans lesquels l'ordre apparent des opérations mémoire ne suit pas la cohérence séquentielle (SC) proposée par Leslie Lamport. Tout programme concurrent s'exécutant sur une telle architecture et conçu avec un modèle SC en tête risque de montrer à l'exécution de nouveaux comportements, dont certains sont potentiellement des comportements incorrects. Par exemple, un algorithme d'exclusion mutuelle correct avec une sémantique par entrelacement pourrait ne plus garantir l'exclusion mutuelle lorsqu'il est mis en oeuvre sur une architecture plus relâchée. Raisonner sur la sémantique de tels programmes s'avère très difficile. Par ailleurs, bon nombre d'algorithmes concurrents sont conçus pour fonctionner indépendamment du nombre de processus mis en oeuvre. On voudrait donc pouvoir s'assurer de la correction d'algorithmes concurrents, quel que soit le nombre de processus impliqués. Pour ce faire, on s'appuie sur le cadre du Model Checking Modulo Theories (MCMT), développé par Ghilardi et Ranise, qui permet la vérification de propriétés de sûreté de programmes concurrents paramétrés, c'est-à-dire mettant en oeuvre un nombre arbitraire de processus. On étend cette technologie avec une théorie permettant de raisonner sur des modèles mémoires faibles. Le résultat ce ces travaux est une extension du model checker Cubicle, appelée Cubicle-W, permettant de vérifier des propriétés de systèmes de transitions paramétrés s'exécutant sur un modèle mémoire faible similaire à TSO.