Thèse soutenue

Potentiels microscopiques non locaux pour l'étude des observables de diffusion de nucléons dans le formalisme des voies couplées

FR  |  
EN
Auteur / Autrice : Amine Nasri
Direction : Eric Bauge
Type : Thèse de doctorat
Discipline(s) : Structure et réactions nucléaires
Date : Soutenance le 14/09/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Commissariat à l'énergie atomique et aux énergies alternatives (France). Direction des applications militaires (Île-de-France)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Denis Lacroix
Examinateurs / Examinatrices : Eric Bauge, Denis Lacroix, Toshihiko Kawano, Marek Ploszajczak, Jutta Escher, Maëlle Kerveno, Marc Dupuis
Rapporteurs / Rapporteuses : Toshihiko Kawano, Marek Ploszajczak

Résumé

FR  |  
EN

Une bonne compréhension et une bonne capacité de prédiction de la section efficace de diffusion de neutron est essentielle à un grand nombre de technologies nucléaires, parmi lesquelles les réacteurs à fission. Pour les noyaux déformés, le calcul des observables de diffusion de nucléon pour la voie élastique et les premiers états excités de basse énergie requiert l'utilisation de calcul en voies couplées. Des potentiels optique et de transition phénoménologiques locaux sont le plus couramment utilisés dans les analyses par voies couplées, mais leur précision en dehors de leur domaine d'ajustement est imprévisible. Des approches microscopiques sont en cours de développement pour augmenter les capacités prédictives et résoudre les problèmes d'extrapolation. Un potentiel obtenu microscopiquement est non local, et de récentes études ont souligné l'importance de traiter explicitement cette non localité sans passer par une procédure de localisation. Notre but dans ce travail est d'étudier dans une approche microscopique, sans paramètre ajustable, l'impact de la non localité des potentiels sur les observables de diffusion de nucléon sur noyau cible. Pour ce faire, nous étudions la diffusion de neutron avec la matrice G de Melbourne qui représente l'interaction entre le projectile et un nucléon de la cible, et nous utilisons la RPA pour décrire la structure de la cible dans le cadre de nos premières applications sur le ⁹⁰Zr. Pour pouvoir étudier aussi des noyaux déformés, nous menons notre étude dans le cadre des voies couplées. La première partie de ce document contient la dérivation, faite dans un cadre unique et cohérent, des équations couplées pour la diffusion de nucléons et des potentiels microscopiques obtenues avec la matrice G de Melbourne et une description de la cible via la RPA. La deuxième partie est dédiée à la présentation des codes que nous avons développés durant ce projet de thèse : MINOLOP pour le calcul de potentiels microscopiques à partir de la matrice G de Melbourne et d'informations de structure données sous la forme d'une densité à 1 corps, et ECANOL pour la résolution des équations en voies couplées avec des potentiels non locaux en entrée. Enfin, nous présentons nos premières applications basées sur ces deux codes : l'étude d'émission de pré-équilibre due à des excitations à 2 phonons dans le ⁹⁰Zr.