Thèse soutenue

Distribution spatiale de fermions fortement corrélés en interaction forte : formalisme, méthodes et phénoménologie en structure nucléaire

FR  |  
EN
Auteur / Autrice : Raphaël-David Lasseri
Direction : Elias Khan
Type : Thèse de doctorat
Discipline(s) : Structure et réactions nucléaires
Date : Soutenance le 05/09/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de physique nucléaire (Orsay, Essonne ; 1956-2019)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Marcella Grasso
Examinateurs / Examinatrices : Elias Khan, Marcella Grasso, Gianluca Colò, Karim Bennaceur, Jean-Paul Ebran, Miguel Marqués
Rapporteur / Rapporteuse : Gianluca Colò, Karim Bennaceur

Résumé

FR  |  
EN

Le noyau est par essence un système complexe, composé de fermions composites fortement corrélés, soumis à la fois aux interactions forte, faible et électromagnétique. La description de sa structure interne est un enjeu important de la physique moderne. Ainsi la manière qu'ont les nucléons de s'organiser au sein des noyaux atomiques est le reflet des corrélations auxquelles ils sont soumis. On comprend alors que la complexité des interactions inter-nucléoniques se traduit par une grande richesse de schémas selon lesquels les nucléons se distribuent dans les systèmes nucléaires. Le noyau révèle une structure délocalisée où les nucléons se répartissent de façon quasi-homogène dans le volume nucléaire. Mais il peut également présenter des sous-structures localisées, appelées clusters ou agrégats nucléaires. Ces travaux s’inscrivent dans le cadre des approches de type champ-moyen relativiste (RMF), permettant un traitement universel de la phénoménologie nucléaire. Dans un premier temps, nous exposerons les éléments de formalisme permettant la construction d’une telle approche en partant des interactions fondamentales qui sous-tendent la dynamique nucléonique au sein des noyaux. Néanmoins ce formalisme ne permet pas de rendre compte des propriétés expérimentales des observables nucléaires : une stricte approche de type champ-moyen, néglige de trop nombreuses classes de corrélations. Nous discuterons alors des méthodes existantes pour prendre en compte ces corrélations, de type particule-trou (déformation) ainsi que de type particules-particules (appariement). Dans un premier temps, une nouvelle méthode diagrammatique, permettant une approche perturbative des corrélations est proposée ainsi qu’une implémentation automatisée associée basée sur une théorie combinatoire. Ensuite, nous reviendrons à un traitement phénoménologique des corrélations particules-trous, pour nous focaliser sur l’impact des corrélations particules-particules. En premier lieu nous discuterons le phénomène de formation de paires nucléoniques en utilisant le langage de la théorie des graphes, langage permettant plusieurs simplifications formelles ainsi qu’une compréhension différentes de l’appariement. Les corrélations d’appariement seront tout d’abord prise en compte par une approche de type Hartree-Bogolioubov relativiste. Toutefois ce formalisme ne conservant pas le nombre de particules, nous présenterons une approche projective permettant de le restaurer. L’effet de cette restauration sur le système sera également étudié. Seront ensuite présentés les différentes implémentations et optimisations numériques, développées pendant cette thèse, pour un traitement général des déformations nucléaires. Munis de ces outils, nous reviendrons sur la formation d’agrégats nucléaires, les clusters, comme phénomène émergent issu de la prise en compte de certaines classes de corrélations. Tout d’abord des mesures de localisations et paramètres quantifiant la dispersion des fonctions d’ondes nucléoniques sont proposées, permettant d’analyser le noyau pour localiser et comprendre l’origine de l’agrégation. L’analyse de ces quantités est présentée et permet la première description unifiée de la formation de clusters aussi bien dans les noyaux légers (Néon, Magnésium) que dans les noyaux lourds émetteurs alpha (Polonium). L’émergence des clusters est ensuite décrite au travers du prisme des transitions de phases quantiques. Un paramètre d’ordre est exhibé ainsi que la caractérisation de ce phénomène en tant que transition de Mott. L’influence des corrélations d’appariement sur la formation de clusters est analysée et une étude précise des propriétés spatiales des paires de nucléons est menée pour plusieurs noyaux dans différentes régions de masses. Enfin une méthode de prise en compte de corrélations à 4-corps, dite de quartet est proposée pour tenter d’expliquer l’émergence des clusters en tant que préformation de particules alpha.