Thèse soutenue

Cartes planaires aléatoires couplées aux systèmes de spins

FR  |  
EN
Auteur / Autrice : Linxiao Chen
Direction : Nicolas Curien
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 16/04/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Institut de physique théorique (Gif-sur-Yvette, Essonne ; 1982-....)
Jury : Président / Présidente : Nathanaël Enriquez
Examinateurs / Examinatrices : Nathanaël Enriquez, Gaëtan Borot, Jérémie Bouttier, Antti Kupiainen, Marie Albenque
Rapporteur / Rapporteuse : Nathanaël Berestycki, Gaëtan Borot

Résumé

FR  |  
EN

Cette thèse vise à améliorer notre compréhension des cartes planaires aléatoires décorées par les modèles de physique statistique. On examine trois modèles particuliers à l'aide des outils provenant de l'analyse, de la combinatoire et des probabilités. Dans une perspective géométrique, on se concentre sur les propriétés des interfaces et les limites locales des cartes aléatoires décorées. Le premier modèle consiste en une famille de quadrangulations aléatoires du disque décorées par un modèle de boucles O(n). Après avoir complété la preuve de son diagramme de phase initiée par [BBG12c] (chap. II), on étudie les longueurs et la structure d'imbrication des boucles dans la phase critique non-générique (chap. III). On montre que ces statistiques, décrites par un arbre étiqueté, convergent en loi vers une cascade multiplicative explicite lorsque le périmètre du disque tend vers l'infini. Le deuxième modèle (chap. IV) consiste en une carte planaire aléatoire décorée par la percolation de Fortuin-Kasteleyn. On complète la preuve de la convergence du modèle esquissée dans [She16b] et établit un certain nombre de propriétés de la limite. Le troisième modèle (chap. V) est celui des triangulations aléatoires du disque décorées par le modèle d'Ising. Il est étroitement lié au modèle des quadrangulations décorées par un modèle O(n) quand n=1. On calcule explicitement la fonction de partition du modèle muni des conditions au bord de Dobrushin au point critique, sous une forme exploitable pour les asymptotiques. À l'aide de ces asymptotiques, on étudie le processus d'épluchage le long de l'interface d'Ising dans la limite où le périmètre du disque tend vers l'infini. Mots clés. Carte planaire aléatoire, modèle de boucles O(n), percolation de Fortuin-Kasteleyn, modèle d'Ising, limite locale, géométrie d'interfaces.