Thèse soutenue

Computation bayésienne en grande dimension
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Alexander Buchholz
Direction : Nicolas Chopin
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 22/11/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de recherche en économie et statistique (France)
établissement opérateur d'inscription : École nationale de la statistique et de l'administration économique (Palaiseau, Essonne)
Jury : Président / Présidente : Christian P. Robert
Examinateurs / Examinatrices : Nicolas Chopin, Christian P. Robert, Sylvia Richardson, Kerrie L. Mengersen, Robin Ryder, Estelle Kuhn
Rapporteurs / Rapporteuses : Christian P. Robert, Sylvia Richardson

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La statistique bayésienne computationnelle construit des approximations de la distribution a posteriori soit par échantillonnage, soit en construisant des approximations tractables. La contribution de cette thèse au domaine des statistiques bayésiennes est le développement de nouvelle méthodologie en combinant des méthodes existantes. Nos approches sont mieux adaptées à la dimension ou entraînent une réduction du coût de calcul par rapport aux méthodes existantes.Notre première contribution améliore le calcul bayésien approximatif (ABC) en utilisant le quasi-Monte Carlo (QMC). ABC permet l'inférence bayésienne dans les modèles avec une vraisemblance intractable. QMC est une technique de réduction de variance qui fournit des estimateurs plus précis d’intégrales. Notre deuxième contribution utilise le QMC pour l'inférence variationnelle(VI). VI est une méthode pour construire des approximations tractable à la distribution a posteriori . La troisième contribution développe une approche pour adapter les échantillonneurs Monte Carlo séquentiel (SMC) lorsque on utilise des noyaux de mutation Hamiltonian MonteCarlo (HMC). Les échantillonneurs SMC permettent une estimation non biaisée de l’évidence du modèle, mais ils ont tendance à perdre en performance lorsque la dimension croit. HMC est une technique de Monte Carlo par chaîne de Markov qui présente des propriétés intéressantes lorsque la dimension de l'espace cible augmente mais elle est difficile à adapter. En combinant les deux,nous construisons un échantillonneur qui tire avantage des deux.