Thèse soutenue

Modélisation théorique de la dissociation induite par collision en phase gazeuse de biomolécules

FR  |  
EN
Auteur / Autrice : Veronica Macaluso
Direction : Riccardo Spezia
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 21/09/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire analyse et modélisation pour la biologie et l'environnement (Evry, Essonne ; 1998-)
établissement opérateur d'inscription : Université d'Évry-Val-d'Essonne (1991-....)
Jury : Président / Présidente : Jean-Yves Salpin
Examinateurs / Examinatrices : Riccardo Spezia, Jean-Yves Salpin, Valérie Gabelica, Anne Boutin, Debora Scuderi, Aude Simon
Rapporteurs / Rapporteuses : Valérie Gabelica

Mots clés

FR

Résumé

FR  |  
EN

Dans la présente thèse, nous rapportons l'étude de la dissociation induite par collision (CID) de biomolécules. La CID est une technique de spectrométrie de masse (MS) bien connue, dont le but est la dissociation d’ions par l'impact avec un gaz inerte. L'énergie de translation collisionnelle est convertie en énergie interne de l’ion qui peut ainsi se dissocier. La CID est donc une technique largement utilisée en MS qui permet d'identifier, ou de quantifier, une ou plusieurs espèces par la détection des fragments générés.La réactivité et la cinétique des réactions chimiques sont généralement étudiées théoriquement par la recherche des points stationnaires sur la coordonnée de réaction. Il est ainsi possible d'identifier le chemin d'énergie minimum de réaction ou la surface d'énergie potentielle (PES). Une autre possibilité est d'effectuer des simulations de dynamique chimique, qui permettent d'explorer la réactivité d'une espèce sans connaitre les produits, ce qui est un point crucial pour des molécules plus grosses. En plus, pour interpréter la MS il est important d'avoir une compréhension fondamentale de la dynamique de la fragmentation de l’ion, et des informations importantes peuvent être récupérées avec des simulations. Dans le présent travail, nous avons étudié et développé des modèles physiques pour étudier des biomolécules complexes et flexibles, comme les acides aminés et les peptides.Une fois que l'ion est excité par une seule collision, le transfert d'énergie peut être suivi d'une redistribution statistique interne de l'énergie vibrationnelle (IVR) de l'ion et des produits statistiques sont typiquement obtenus. D'autre part, la collision peut causer une localisation de l'énergie et une excitation rapide, donnant des produits différents de ceux observés après une IVR. En particulier, une situation limite est celle où l'ion se fragmente juste après la collision avec le gaz. Afin de récupérer ces fragmentations moins statistiques, il est important de modéliser la collision, ce qui peut être fait par une dynamique chimique de collision explicite. Cependant, ce type de simulation est limité dans le temps (~ 10-15 ps). La dynamique chimique par activation statistique interne (ou thermique) peut être utilisée pour obtenir une échelle de temps plus longue et une réactivité statistique. De plus, en observent le déclin de la population par rapport au temps, il est possible d'obtenir les constantes de vitesse globales et individuelles. Les deux modes d'activation ont été appliqués pour étudier la réactivité de l'anion di-proline, les deux tripeptides doublement chargés TIK(H+)2 et TLK(H+)2 et l'anion L-cystéine-sulfate. Pour l'étude de ce dernier système en particulier, nous avons utilisé les résultats de nos simulations pour interpréter des expériences faites avec différents montages expérimentaux.