Vers des stratégies pharmacologiques pour des mutations faux-sens dans deux gènes liés aux dystrophies musculaires
Auteur / Autrice : | Sara Dias Henriques |
Direction : | Isabelle Richard |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences de la vie et de la santé |
Date : | Soutenance le 11/07/2018 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Structure et dynamique des systèmes vivants (Gif-sur-Yvette, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Approches génétiques intégrées et nouvelles thérapies pour les maladies rares (Evry, Essonne) |
établissement opérateur d'inscription : Université d'Évry-Val-d'Essonne (1991-....) | |
Jury : | Président / Présidente : Francis Quétier |
Examinateurs / Examinatrices : Isabelle Richard, Francis Quétier, Marc Bartoli, Caroline Norez, Xavier Nissan | |
Rapporteurs / Rapporteuses : Marc Bartoli |
Mots clés
Résumé
La pathogénicité de nombreuses maladies génétiques humaines peut être liée à la reconnaissance de la protéine mutante mal repliée par le système de contrôle de la qualité des cellules (CQ), conduisant à leur dégradation. Néanmoins, un certain nombre de ces protéines mutées ont conservé une activité biologique, suggérant que le sauvetage de la dégradation peut réduire la pathologie et ouvrir la porte à des stratégies thérapeutiques pour traiter ces maladies.Les dystrophies musculaires des ceintures (LGMD) sont des maladies musculaires caractérisés par une atrophie progressive de la ceinture pelvienne et scapulaire. Des études menées par nous et par d'autres groupes ont montré que le mécanisme pathologique de certaines LGMD (sarcoglycanopathies et dystroglycanopathies) est associé à une dégradation prématurée des protéines mal repliées par le CQ. Les sarcoglycanopathies (LGMD2C-F) sont causées par des mutations dans l'un des 4 sarcoglycanes (SG). Ces protéines transmembranaires font partie du complexe dystrophine-glycoprotéine (DGC), qui lie le cytosquelette à la matrice extracellulaire (ECM) et est crucial pour la résistance mécanique des fibres musculaires. Les dystroglycanopathies sont un groupe de maladies associées à l'hypoglycosylation de l'alpha-dystroglycane (a-DG). Au DGC, a-DG est en contact direct avec l'ECM par une glycosylation complexe générée par l'action de plusieurs enzymes. Notre laboratoire se concentre sur l'une de ces enzymes, la protéine liée à la fukutine (FKRP), dont les mutations mènent à LGMD2I.Dans le but d'identifier des molécules candidates capables de sauver les protéines mutantes sarcoglycanes et FKRP, un criblage à haute-débit de composés pharmacologiques validés a été envisagé. Pour ce type de criblage, des modèles cellulaires in vitro appropriés ont été générés. Grâce à une approche candidate et à une criblage, nous avons identifié plusieurs molécules capables de sauver et de localiser correctement les mutants alpha-SG à la membrane cellulaire. Dans le but de tester l'efficacité et la sécurité des molécules in vivo, nous avons généré un nouveau modèle de souris portant une mutation T151R b-SG, car le modèle précédent portant une mutation correspondant à la mutation humaine R77C ne présentait pas de pathologie. Le nouveau modèle ne présentait pas non plus de phénotype dystrophique, la protéine bêta-SG mutée étant correctement présente à la membrane de la fibre musculaire, ce qui indique que le système de CQ est différent entre les deux espèces.En ce qui concerne FKRP, nous avons caractérisé certaines protéines mutantes in vitro et identifié deux différentes classes de mutants: des mutants retenus dans l'ER mais néanmoins capables de trafiquer vers le Golgi où ils ont montré une fonctionnalité. D'autres mutations FKRP correctement adressées au Golgi ont cependant perdu leur fonctionnalité. Les patients affectés par ces mutations ne peuvent pas bénéficier de stratégies pharmacologiques ciblant le CQ et pourraient être des candidats pour des approches de thérapie génique. En utilisant les mutants FKRP qui pourraient être sauvés de la dégradation et être fonctionnels, nous avons généré de nouveaux modèles cellulaires pour les criblages à haut-débit qui sont actuellement en cours de validation.Globalement, ce projet a permis la génération de modèles in vitro pertinents pour le test de médicaments pour le sauvetage de protéines mutantes faux-sens menant à deux maladies musculaires pour lesquelles aucun traitement curatif actuel n'est disponible.