Méthodes d’amélioration pour l'évaluation de l'enveloppement des données évaluation de l'efficacité croisée
Auteur / Autrice : | Junfei Chu |
Direction : | Chengbin Chu, Jie Wu |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et technologies industrielles |
Date : | Soutenance le 21/12/2018 |
Etablissement(s) : | Université Paris-Saclay (ComUE) en cotutelle avec University of science and technology of China |
Ecole(s) doctorale(s) : | École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : CentraleSupélec (2015-....) |
Laboratoire : Laboratoire génie industriel (Gif-sur-Yvette, Essonne) | |
Jury : | Président / Présidente : Gongbing Bi |
Examinateurs / Examinatrices : Chengbin Chu, Jie Wu, Vincent Mousseau | |
Rapporteur / Rapporteuse : Imed Kacem, Yingming Wang |
Mots clés
Résumé
L'évaluation croisée d'efficacité basée sur la data envelopment analysis (DEA) a été largement appliquéepour l'évaluation d'efficacité et le classement des unités de prise de décision (decision-making units, DMUs). A l’heureactuelle, cette méthode présente toujours deux défauts majeurs : la non-unicité des poids optimaux attachés aux entréeset aux sorties et la non Pareto-optimalité des résultats d’évaluation. Cette thèse propose des méthodes alternatives poury remédier. Nous montrons d’abord que les efficacités croisées visées dans les modèles traditionnels avec objectifssecondaires ne sont pas toujours atteignables pour toutes les DMUs. Nous proposons ensuite un modèle capable detoujours fournir des objectifs d'efficacité croisée atteignables pour toutes les DMUs. Plusieurs nouveaux modèles avecobjectifs secondaires bienveillants ou agressifs et un modèle neutre sont proposés. Un exemple numérique est utilisépour comparer les modèles proposés à ceux qui existent dans la littérature. Nous présentons ensuite une approched'évaluation croisée d'efficacité basée sur l'amélioration de Pareto. Cette approche est composée de deux modèles etd’un algorithme. Les modèles sont utilisés respectivement pour estimer si un ensemble donné de scores d’efficacitécroisée est Pareto-optimal et pour améliorer l’efficacité croisée de cet ensemble si cela est possible. L'algorithme estutilisé pour générer un ensemble Pareto-optimal de scores d'efficacité croisée pour les DMUs. L'approche proposéeest finalement appliquée pour la sélection de projets de R&D et comparée aux approches traditionnelles. En outre,nous proposons une approche d’évaluation croisée d’efficacité qui traite simultanément les deux problématiquesmentionnées ci-dessus. Un modèle de jeu de négociation croisée est proposé pour simuler la négociation entre chaquecouple de DMUs au sein du groupe afin d'identifier un ensemble unique de poids à utiliser pour le calcul de l'efficacitécroisée entre eux. De plus, un algorithme est développé pour résoudre ce modèle via une suite de programmes linéaires.L'approche est finalement illustrée en l'appliquant à la sélection des fournisseurs verts. Enfin, nous proposons uneévaluation croisée d'efficacité basée sur le degré de satisfaction. Nous introduisons d'abord la nation de degré desatisfaction de chaque DMU sur les poids optimaux sélectionnés par les autres. Ensuite, un modèle max-min est fournipour déterminer un ensemble des poids optimaux pour chaque DMU afin de maximiser tous les degrés de satisfactiondes DMUs. Deux algorithmes sont ensuite développés pour résoudre le modèle et garantir l’unicité des poids optimauxde chaque DMU, respectivement. Enfin, l’approche proposée est appliquée sur une étude des cas pour la sélection detechnologies.