Formules de Weyl par réduction de dimension : application à des Laplaciens électromagnétiques
Auteur / Autrice : | Pierig Keraval |
Direction : | Nicolas Raymond, Karel Pravda-Starov |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et leurs interactions |
Date : | Soutenance le 20/12/2018 |
Etablissement(s) : | Rennes 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) |
Partenaire(s) de recherche : | ComuE : Université Bretagne Loire (2016-2019) |
Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....) |
Résumé
La thèse consiste en l’étude spectrale d’opérateurs partiellement semi-classiques. Quand la géométrie du problème suggère une localisation anisotrope des fonctions propres associées aux basses énergies (bord du domaine, lieu d’annulation du champs magnétique), le développement local de l’opérateur amène naturellement à une structure à double échelle. Il s'agit, via un schéma de réduction ''à la Born-Oppenheimer'', utilisant le formalisme du calcul pseudodifférentiel pour des symboles à valeur opérateur, de montrer l’existence d’un opérateur effectif à symbole scalaire. On en déduit ensuite des formules de Weyl pour le comptage des basses valeurs propres. Cette stratégie est appliquée : au Laplacien de Robin sur un domaine borné, en dimension quelconque et au Laplacien magnétique dans R², dans le cas où le champ magnétique s’annule sur une courbe fermée.