Thèse soutenue

Rendre les systèmes de bases de données plus coopératifs à l'aide de la théorie des ensembles flous

FR  |  
EN
Auteur / Autrice : Aurélien Moreau
Direction : Olivier Pivert
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 26/06/2018
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : ComuE : Université Bretagne Loire (2016-2019)
Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) - SHAMAN

Résumé

FR  |  
EN

Dans ces travaux de thèse nous proposons de tirer parti de la théorie des ensembles flous afin d'améliorer les interactions entre les systèmes de bases de données et les utilisateurs. Les mécanismes coopératifs visent à aider les utilisateurs à mieux interagir avec les SGBD. Ces mécanismes doivent faire preuve de robustesse : ils doivent toujours pouvoir proposer des réponses à l'utilisateur. Empty set (0,00 sec) est un exemple typique de réponse qu'il serait désirable d'éradiquer. Le caractère informatif des explications de réponses est parfois plus important que les réponses elles-mêmes : ce peut être le cas avec les réponses vides et pléthoriques par exemple, d'où l'intérêt de mécanismes coopératifs robustes, capables à la fois de contribuer à l'explication ainsi qu'à l'amélioration des résultats. Par ailleurs, l'utilisation de termes de la langue naturelle pour décrire les données permet de garantir l'interprétabilité des explications fournies. Permettre à l'utilisateur d'utiliser des mots de son propre vocabulaire contribue à la personnalisation des explications et améliore l'interprétabilité. Nous proposons de nous intéresser aux explications dans le contexte des réponses coopératives sous trois angles : 1) dans le cas d'un ensemble pléthorique de résultats ; 2) dans le contexte des systèmes de recommandation ; 3) dans le cas d'une recherche à partir d'exemples. Ces axes définissent des approches coopératives où l'intérêt des explications est de permettre à l'utilisateur de comprendre comment sont calculés les résultats proposés dans un effort de transparence. Le caractère informatif des explications apporte une valeur ajoutée aux résultats bruts, et forme une réponse coopérative.