Apports de la Microscopie à Force Atomique à l’étude de phénomènes dynamiques en biologie et développement instrumental associé
Auteur / Autrice : | Eléonore Lambert |
Direction : | Michaël Molinari |
Type : | Thèse de doctorat |
Discipline(s) : | Aspects moléculaires et cellulaires de la biologie |
Date : | Soutenance le 20/12/2018 |
Etablissement(s) : | Reims |
Ecole(s) doctorale(s) : | École doctorale Biologie, Chimie, Santé (Reims ; 2018-) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de recherche en nanosciences (LRN) - EA 4682 (Reims, Marne) |
Jury : | Président / Présidente : Gabriel Paës |
Examinateurs / Examinatrices : Laurène Tetard, Rodolphe Jaffiol, Sophie Lecomte | |
Rapporteur / Rapporteuse : Touria Cohen-Bouhacina, Laurène Tetard |
Mots clés
Résumé
Le Laboratoire de Recherche en Nanosciences EA 4682 s’est récemment équipé de la microscopie à force atomique haute-vitesse (HS-AFM) permettant la visualisation en temps réel des dynamiques d’interactions d’un panel infini d’échantillons biologiques à l’échelle nanométrique. De nombreux champ de recherche nécessite la mise au point de techniques permettant à la fois une imagerie dynamique (vidéomicroscopie) mais également de plus en plus une imagerie haute résolution (microscopie champ proche). Ce couplage a été récemment obtenu grâce au développement de la microscopie à force atomique ultra-rapide. La limitation actuelle de ce microscope ultra-rapide, à savoir l’acquisition d’informations en relation uniquement avec la surface de l’objet biologique étudié, crée un rempart à l’obtention de connaissances nouvelles sur les dynamiques sous-jacentes que renferment certains systèmes biomoléculaires. Pour s’affranchir de cette contrainte, nous nous proposons dans ce projet de faire évoluer notre outil de nanocaractérisation en lui ajoutant des fonctionnalités optiques et des fonctionnalités permettant de faire de la spectroscopie de force. La conduite de ce projet se fera selon un travail de développement instrumental scindé en deux grandes étapes : - l’apport d’outils de microscopie optique conventionnels : FRAP – FRET – FLIM – Fluorescence – TIRFM. Nous couplons ainsi la nanocaractérisation hautement résolue spatialement et temporellement avec des informations intrinsèques de nos échantillons. Cette complémentarité apparaît de plus en plus comme fondamentale dans les demandes des biologistes. - la mise au point de protocoles de fonctionnalisation de leviers AFM afin de réaliser de la spectroscopie de force et ainsi obtenir des informations sur les propriétés mécaniques des échantillons biologiques. Ce projet de recherche sera réalisé au Laboratoire de Recherche en Nanosciences EA 4682, Université de Reims Champagne Ardenne sous la direction du Pr. Michael Molinari et du Dr. Maxime Ewald récemment recruté en tant que maître de conférences (sept. 2013) et qui pu démarrer la thématique de la microscopie AFM haute-vitesse au sein de l’équipe. Il s’effectuera en collaboration avec le Pr. T. Ando du Biophysics Lab’ de l’Université de Kanazawa (Japon) pour la partie instrumentation, et avec le Dr. Gabriel Paës pour l’étude des échantillons biologiques. Les objets étudiés lors de cette thèse seront liés au projet ANR Lignoprog qui vient de démarrer au 1er novembre 2014 porté par Dr. Gabriel Paës (INRA UMR FARE, Reims). Dans ce projet, des échantillons biologiques se doivent d’être caractériser en dynamique. Ils concernent la biomasse lignocellulosique (BL), réseau complexe de polymères constituant les parois végétales (PV). La complexité architecturale et chimique de la BL est un frein à sa conversion industrielle. Pour atteindre ce but, non seulement la fraction cellulosique mais aussi les fractions hémicellulosiques et ligneuses doivent être valorisées, sinon les bio-raffineries ne seront pas compétitives. Le principal challenge à relever est celui du coût élevé et de la relative faible efficacité de l’étape de déconstruction enzymatique de la BL. Avec les fonctionnalités d’imagerie développées dans ce projet, nous espérons apporter des éléments de réponses sur la déconstruction enzymatique. Par ailleurs, même si les objets étudiés seront principalement ceux du projet Lignoprog, une validation du dispositif pourra être réalisée en parallèle sur d’autres échantillons biologiques tels que des cellules vivantes seront envisagées : caractérisation, mise en évidence leur réactivité vis-à-vis des divers paramètres physiologiques du milieu (pH, concentration, composition), corrélation de ces résultats avec leurs propriétés mécaniques.