Thèse soutenue

Développement de représentations et d'algorithmes efficaces pour l'apprentissage statistique sur des données génomiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Marine Le Morvan
Direction : Jean-Philippe VertAndrei Zinovyev
Type : Thèse de doctorat
Discipline(s) : Bio-informatique
Date : Soutenance le 03/07/2018
Etablissement(s) : Paris Sciences et Lettres (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Centre de bio-informatique (Fontainebleau, Seine et Marne)
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : Alexandre Gramfort
Examinateurs / Examinatrices : Jean-Philippe Vert, Andrei Zinovyev, Florence d' Alché-Buc, Chloé-Agathe Azencott
Rapporteurs / Rapporteuses : Alexandre Gramfort, Fabio Vandin

Résumé

FR  |  
EN

Depuis le premier séquençage du génome humain au début des années 2000, de grandes initiatives se sont lancé le défi de construire la carte des variabilités génétiques inter-individuelles, ou bien encore celle des altérations de l'ADN tumoral. Ces projets ont posé les fondations nécessaires à l'émergence de la médecine de précision, dont le but est d'intégrer aux dossiers médicaux conventionnels les spécificités génétiques d'un individu, afin de mieux adapter les traitements et les stratégies de prévention. La traduction des variations et des altérations de l'ADN en prédictions phénotypiques constitue toutefois un problème difficile. Les séquenceurs ou puces à ADN mesurent plus de variables qu'il n'y a d'échantillons, posant ainsi des problèmes statistiques. Les données brutes sont aussi sujettes aux biais techniques et au bruit inhérent à ces technologies. Enfin, les vastes réseaux d'interactions à l'échelle des protéines obscurcissent l'impact des variations génétiques sur le comportement de la cellule, et incitent au développement de modèles prédictifs capables de capturer un certain degré de complexité.Cette thèse présente de nouvelles contributions méthodologiques pour répondre à ces défis.Tout d'abord, nous définissons une nouvelle représentation des profils de mutations tumorales, qui exploite leur position dans les réseaux d'interaction protéine-protéine. Pour certains cancers, cette représentation permet d'améliorer les prédictions de survie à partir des données de mutations, et de stratifier les cohortes de patients en sous-groupes informatifs. Nous présentons ensuite une nouvelle méthode d'apprentissage permettant de gérer conjointement la normalisation des données et l'estimation d'un modèle linéaire. Nos expériences montrent que cette méthode améliore les performances prédictives par rapport à une gestion séquentielle de la normalisation puis de l'estimation. Pour finir, nous accélérons l'estimation de modèles linéaires parcimonieux, prenant en compte des interactions deux à deux, grâce à un nouvel algorithme. L'accélération obtenue rend cette estimation possible et efficace sur des jeux de données comportant plusieurs centaines de milliers de variables originales, permettant ainsi d'étendre la portée de ces modèles aux données des études d'associations pangénomiques.