Thèse soutenue

Modélisation du couplage mutuel présent dans un réseau d'antennes : étude théorique et applications au radar MIMO et à un contexte RFID

FR  |  
EN
Auteur / Autrice : Ayichatou Gueye
Direction : Geneviève Baudoin
Type : Thèse de doctorat
Discipline(s) : Electronique, Optronique et Systèmes
Date : Soutenance le 20/12/2018
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire électronique, systèmes de communication et microsystèmes - ESYCOM
Jury : Président / Présidente : Michel Terré
Examinateurs / Examinatrices : Geneviève Baudoin, Florence Nadal, Benoît Poussot
Rapporteur / Rapporteuse : Christophe Craeye, Cyril Nicolas Decroze

Résumé

FR  |  
EN

Modélisation du couplage mutuel présent dans un réseau d'antennes : étude théorique, applications au radar MIMO et à un contexte RFID. Le couplage mutuel est un phénomène électromagnétique susceptible de se produire dans les réseaux d'antennes. Il est dû aux interactions électromagnétiques qui se produisent entre les éléments d'un réseau d'antennes et induisent une modification des paramètres intrinsèques des antennes. Lorsque la distance inter-élément diminue, les effets du couplage mutuel augmentent. La prise en compte du couplage mutuel dans les réseaux d'antennes, lors de leur conception ou dans les algorithmes de traitement d'antennes, permet d'avoir accès aux caractéristiques de rayonnement réel de chaque élément du réseau, ce qui peut par exemple permettre d'améliorer les performances de détection/localisation de cibles à l'aide d'un radar MIMO (Multiple Input Multiple Output). Dans un contexte RFID (Radio Frequency IDentification), modéliser le couplage mutuel permet de modéliser le système formé par un ensemble de tags et de statuer sur le comportement du système dans une configuration donnée. Cette thèse porte sur la modélisation du couplage mutuel présent dans un réseau d'antennes. Nous avons d'abord proposé une nouvelle méthode de modélisation du diagramme de rayonnement de l'élément actif basée sur la résolution de problèmes d'optimisation au sens des moindres carrés pour trouver les pondérations complexes qui modélisent les interactions électromagnétiques entre les éléments du réseau. Ces pondérations complexes peuvent être utilisées comme des lois d'excitation à appliquer à une antenne isolée décrivant les positions des éléments du réseau, afin d'étudier expérimentalement le comportement d'un réseau d'antennes. Cette modélisation du couplage mutuel est ensuite appliquée dans un contexte radar MIMO où nous montrons qu'il est possible de synthétiser le diagramme de rayonnement de l'élément actif sur une plateforme expérimentale de radar MIMO composée d'une seule antenne émettrice et d'une seule antenne réceptrice qui se déplacent sur des rails en des positions prédéfinies. A la réception, la matrice des signaux reçus est obtenue en appliquant le principe de superposition. Nous avons également cherché à modéliser le couplage mutuel en proposant une formulation théorique de l'impédance mutuelle entre les éléments d'un réseau de dipôles fins aléatoirement répartis dans un plan afin d'appliquer cette modélisation du couplage mutuel à un contexte RFID, où les tags, représentés par les dipôles, sont éparpillés dans un plan et éclairés par un lecteur. Nous avons également proposé une formulation théorique de l'impédance d'entrée du dipôle environné et avons étudié les effets du couplage mutuel sur les deux paramètres intervenant dans le bilan d'une liaison RFID : l'adaptation (la bande passante) et le diagramme de rayonnement du dipôle environné. Nous avons montré qu'il était possible de synthétiser le diagramme de rayonnement du dipôle environné et de trouver la modification de l'adaptation du dipôle environné, ce qui, à terme, permettrait de statuer sur le taux et/ou la distance de lecture d'une communication RFID dans un contexte haute densité