Thèse soutenue

Parallélisation de la ligne de partage des eaux dans le cadre des graphes à arêtes valuées sur architecture multi-cœurs

FR  |  
EN
Auteur / Autrice : Yosra Braham
Direction : Mohamed Akil
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 24/11/2018
Etablissement(s) : Paris Est en cotutelle avec Ecole nationale d'ingénieurs (Metz)
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - Laboratoire d'Informatique Gaspard-Monge / LIGM
Jury : Président / Présidente : Najoua Essoukri Ben Amara
Examinateurs / Examinatrices : Mohamed Akil, Serge Weber, Mohamed Hédi Bedoui
Rapporteurs / Rapporteuses : Olivier Déforges, Jihène Malek

Résumé

FR  |  
EN

Notre travail s'inscrit dans le cadre de la parallélisation d’algorithmes de calcul de la Ligne de Partage des Eaux (LPE) en particulier la LPE d’arêtes qui est une notion de la LPE introduite dans le cadre des Graphes à Arêtes Valuées. Nous avons élaboré un état d'art sur les algorithmes séquentiels de calcul de la LPE afin de motiver le choix de l'algorithme qui fait l'objet de notre étude qui est l'algorithme de calcul de noyau par M-bord. L'objectif majeur de cette thèse est de paralléliser cet algorithme afin de réduire son temps de calcul. En premier lieu, nous avons présenté les travaux qui se sont intéressés à la parallélisation des différentes variantes de la LPE et ce afin de dégager les problématiques que soulèvent cette tâche et les solutions adéquates à notre contexte. Dans un second lieu, nous avons montré que malgré la localité de l'opération de base de cet algorithme qui est l’abaissement de la valeur de certaines arêtes nommées arêtes M-bord, son exécution parallèle se trouve pénaliser par un problème de dépendance de données, en particulier au niveau des arêtes M-bord qui ont un sommet non minimum commun. Dans ce contexte, nous avons proposé trois stratégies de parallélisation de cet algorithme visant à résoudre ce problème de dépendance de données. La première stratégie consiste à diviser le graphe de départ en des bandes appelées partitions, et les traiter en parallèle sur P processeurs. La deuxième stratégie consiste à diviser les arêtes du graphe de départ en alternance en des sous-ensembles d’arêtes indépendantes. La troisième stratégie consiste à examiner les sommets au lieu des arêtes du graphe initial tout en préservant le paradigme d’amincissement sur lequel est basé l’algorithme séquentiel initial. Par conséquent, l’ensemble des sommets non-minima adjacents aux sommets minima sont traités en parallèle. En dernier lieu, nous avons étudié la parallélisation d'une technique de segmentation basée sur l'algorithme de calcul de noyau par M-bord. Cette technique comprend les étapes suivantes : la recherche des minima régionaux, la pondération des sommets et le calcul des sommets minima et enfin calcul du noyau par M-bord. A cet égard, nous avons commencé par faire une étude relative à la dépendance des données des différentes étapes qui la constituent et nous avons proposé des algorithmes parallèles pour chacune d'entre elles. Afin d'évaluer nos contributions, nous avons implémenté les différents algorithmes parallèles proposés dans le cadre de cette thèse sur une architecture multi-cœurs à mémoire partagée. Les résultats obtenus ont montré des gains en termes de temps d’exécution. Ce gain est traduit par des facteurs d’accélération qui augmentent avec le nombre de processeurs et ce quel que soit la taille des images à segmenter