Thèse soutenue

Une approche basée sur la qualité pour mettre à jour les bases de données géographiques de référence à partir de traces GPS issues de la foule

FR  |  
EN
Auteur / Autrice : Stefan Ivanovic
Direction : Sébastien Mustière
Type : Thèse de doctorat
Discipline(s) : Sciences et Technologies de l'Information Géographique
Date : Soutenance le 19/01/2018
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire en Sciences et technologies de l'information géographique (Champs-sur-Marne, Seine-et-Marne) - Laboratoire des Sciences et Technologies de l'Information Géographique / LaSTIG
Jury : Président / Présidente : Karine Bennis-Zeitouni
Examinateurs / Examinatrices : Sébastien Mustière, Thomas Devogele, Alexis Comber, Ana-Maria Olteanu-Raimond
Rapporteur / Rapporteuse : Aldo Napoli, Didier Josselin

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Ces dernières années, le besoin de données géographiques de référence a significativement augmenté. Pour y répondre, il est nécessaire de mettre jour continuellement les données de référence existantes. Cette tâche est coûteuse tant financièrement que techniquement. Pour ce qui concerne les réseaux routiers, trois types de voies sont particulièrement complexes à mettre à jour en continu : les chemins piétonniers, les chemins agricoles et les pistes cyclables. Cette complexité est due à leur nature intermittente (elles disparaissent et réapparaissent régulièrement) et à l’hétérogénéité des terrains sur lesquels elles se situent (forêts, haute montagne, littoral, etc.).En parallèle, le volume de données GPS produites par crowdsourcing et disponibles librement augmente fortement. Le nombre de gens enregistrant leurs positions, notamment leurs traces GPS, est en augmentation, particulièrement dans le contexte d’activités sportives. Ces traces sont rendues accessibles sur les réseaux sociaux, les blogs ou les sites d’associations touristiques. Cependant, leur usage actuel est limité à des mesures et analyses simples telles que la durée totale d’une trace, la vitesse ou l’élévation moyenne, etc. Les raisons principales de ceci sont la forte variabilité de la précision planimétrique des points GPS ainsi que le manque de protocoles et de métadonnées (par ex. la précision du récepteur GPS).Le contexte de ce travail est l’utilisation de traces GPS de randonnées pédestres ou à vélo, collectées par des volontaires, pour détecter des mises à jours potentielles de chemins piétonniers, de voies agricoles et de pistes cyclables dans des données de référence. Une attention particulière est portée aux voies existantes mais absentes du référentiel. L’approche proposée se compose de trois étapes : La première consiste à évaluer et augmenter la qualité des traces GPS acquises par la communauté. Cette qualité a été augmentée en filtrant (1) les points extrêmes à l’aide d’un approche d’apprentissage automatique et (2) les points GPS qui résultent d’une activité humaine secondaire (en dehors de l’itinéraire principal). Les points restants sont ensuite évalués en termes de précision planimétrique par classification automatique. La seconde étape permet de détecter de potentielles mises à jour. Pour cela, nous proposons une solution d’appariement par distance tampon croissante. Cette distance est adaptée à la précision planimétrique des points GPS classifiés pour prendre en compte la forte hétérogénéité de la précision des traces GPS. Nous obtenons ainsi les parties des traces n’ayant pas été appariées au réseau de voies des données de référence. Ces parties sont alors considérées comme de potentielles voies manquantes dans les données de référence. Finalement nous proposons dans la troisième étape une méthode de décision multicritère visant à accepter ou rejeter ces mises à jour possibles. Cette méthode attribue un degré de confiance à chaque potentielle voie manquante. L’approche proposée dans ce travail a été évaluée sur un ensemble de trace GPS multi-sources acquises par crowdsourcing dans le massif des Vosges. Les voies manquantes dans les données de références IGN BDTOPO® ont été détectées avec succès et proposées comme mises à jour potentielles