Thèse soutenue

Réseaux profonds pour la classification des opinions multilingue

FR  |  
EN
Auteur / Autrice : Indira Lisa Medrouk
Direction : Jacqueline SignoriniAnna Pappa
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 06/12/2018
Etablissement(s) : Paris 8
Ecole(s) doctorale(s) : École doctorale Sciences sociales (Saint-Denis, Seine-Saint-Denis ; 2000-....)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire d' informatique avancée de Saint-Denis
Jury : Président / Présidente : Tita Kyriakopoulou
Examinateurs / Examinatrices : Jacob Thomas Matthews
Rapporteurs / Rapporteuses : Maria Rifqi, Marie-Jeanne Lesot

Résumé

FR  |  
EN

À l’ère de l’avènement des réseaux sociaux où tout un chacun peut se targuerd’être un producteur de contenus, l’intérêt grandissant de la recherche etl’industrie pour l’analyse automatique des opinions est un fait incontestable.Cette thèse traite de la fouille d’opinions en adressant principalement une caractéristiqueinhérente aux avis publiés sur le Web reflétant leurs caractèresglobalisés et multilingue.Pour adresser la problématique multilingue des opinions, le modèle proposéest inspiré du processus d’acquisition des langues simultanées avec intensitéégale chez les jeunes enfants. Il est basé sur des réseaux neuronauxprofonds, avec comme intention de se défaire de pré-traitements, de choixmanuels de caractéristiques et surtout d’avoir une chaîne de traitement sansinterdépendances de langues, de traduction ou de langue pivot.L’évaluation du modèle proposé a été effectué sur des corpus composés dequatre langues, à savoir le français, l’anglais, le grec et l’arabe pour répondreà une classification d’opinion suivant deux polarités, positive et négative,ainsi qu’une classification thématique. Les diverses expérimentations alliantvariation de taille de corpus, regroupement bi-tri et quadrilingue présentésà un réseau profond sans modules additionnels ont montré qu’à l’instar dudéveloppement de la compétence bilingue chez l’enfant qui est liée à la qualitéet la quantité de son immersion au contexte linguistique, le réseau apprendmieux dans un environnement riche et varié.Dans le cadre de la problématique de la classification des opinions, ledeuxième volet de la thèse présente une étude comparative de deux modèlesde réseaux profonds : les réseaux convolutionnels et les réseaux récurrents.Notre contribution consiste à démontrer leur complémentarité selon leurscombinaisons dans un contexte multilingue.