Problèmes elliptiques singuliers dans des domaines perforés et à deux composants
Auteur / Autrice : | Federica Raimondi |
Direction : | Patrizia Donato, Sara Monsurro |
Type : | Thèse de doctorat |
Discipline(s) : | Mathematiques appliquees et sciences sociales |
Date : | Soutenance le 27/11/2018 |
Etablissement(s) : | Normandie en cotutelle avec Università degli studi della Campania "Luigi Vanvitelli" (Aversa, Italie) |
Ecole(s) doctorale(s) : | École doctorale mathématiques, information et ingénierie des systèmes (Caen) |
Partenaire(s) de recherche : | Equipe de recherche : Laboratoire de mathématiques Raphaël Salem (Saint-Etienne-du-Rouvray, Seine-Maritime ; 2000-...) |
Laboratoire : Laboratoire de mathématiques Raphaël Salem (Saint-Etienne-du-Rouvray, Seine-Maritime ; 2000-...) | |
Etablissement de préparation de la thèse : Université de Rouen Normandie (1966-....) | |
Jury : | Examinateurs / Examinatrices : Patrizia Donato, Sara Monsurro, Maria Eugenia Perez Martinez, Marc Briane, Antonio Gaudiello, Sorin Mardare, Carmen Perugia |
Mots clés
Résumé
Cette thèse est consacrée principalement à l’étude de quelques problèmes elliptiques singuliers dans un domaine Ωɛ*, périodiquement perforé par des trous de taille ɛ. On montre l’existence et l’unicité d’une solution, pour tout ɛ fixé, ainsi que des résultats d’homogénéisation et correcteurs pour le problème singulier suivant :{█(-div (A (x/ɛ,uɛ)∇uɛ)=fζ(uɛ) dans Ωɛ*@uɛ=0 sur Γɛ0@@(A (x/ɛ,uɛ)∇uɛ)υ+ɛγρ (x/ɛ) h(uɛ)= ɛg (x/ɛ) sur Γɛ1@)┤Où l’on prescrit des conditions de Dirichlet homogènes sur la frontière extérieure Γɛ0 et des conditions de Robin non linéaires sur la frontière des trous Γɛ1. Le champ matriciel quasi linéaire A est elliptique, borné, périodique dans la primière variable et de Carathéodory. Le terme singulier non linéaire est le produit d’une fonction continue ζ (singulier en zéro) et de f, dont la sommabilité dépend de la croissance de ζ près de sa singularité. Le terme de bord non linéaire h est une fonction croissante de classe C1, ρ et g sont des fonctions périodiques non négatives avec sommabilité convenables. Pour étudier le comportement asymptotique du problème quand ɛ -> 0, on applique la méthode de l’éclatement périodique due à D. Cioranescu-A. Damlamian-G. Griso (cf. D. Cioranescu-A. Damlamian-P. Donato-G. Griso-R. Zaki pour les domaines perforés). Enfin, on montre l’existence et l’unicité de la solution faible pour la même équation, dans un domaine à deux composants Ω = Ω1 υ Ω2 υ Γ, étant Γ l’interface entre le composant connecté Ω1 et les inclusions Ω2. Plus précisément on considère{█(-div (A(x, u)∇u)+ λu=fζ(u) dans Ω\Γ,@u=0 sur δΩ@(A(x, u1)∇u1)υ1= (A(x, u2)∇u2)υ1 sur Γ,@(A(x, u1)∇u1)υ1= -h(u1-u2) sur Γ@)┤Où λ est un réel non négatif et h représente le coefficient de proportionnalité entre le flux de chaleur et le saut de la solution, et il est supposé être borné et non négatif sur Γ.