Approche basées sur l'apprentissage en profondeur pour la segmentation des organes à risques dans les tomodensitométries thoraciques.
Auteur / Autrice : | Roger Trullo Ramirez |
Direction : | Su Ruan, Caroline Petitjean |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 12/11/2018 |
Etablissement(s) : | Normandie |
Ecole(s) doctorale(s) : | École doctorale mathématiques, information et ingénierie des systèmes (Caen) |
Partenaire(s) de recherche : | Equipe de recherche : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...) |
Etablissement de préparation de la thèse : Université de Rouen Normandie (1966-....) | |
Jury : | Président / Présidente : Liming Chen |
Rapporteur / Rapporteuse : Nicolas Thome, Mathieu Hatt |
Résumé
La radiothérapie est un traitement de choix pour le cancer thoracique, l’une des principales causes de décès dans le monde. La planification de la radiothérapie nécessite de contourer non seulement la tumeur, mais également les organes à risque (OAR) situés près de la tumeur dans le thorax, tels que le coeur, les poumons, l’oesophage, etc. Cette segmentation permet de minimiser la quantité d’irradiation reçue pendant le traitement. Aujourd’hui, la segmentation de OAR est réalisée principalement manuellement par des cliniciens sur des images scanner (CT), malgré une prise en charge logicielle partielle. C’est une tâche complexe, sujette à la variabilité intra et interobservateur. Dans ce travail, nous présentons plusieurs méthodologies utilisant des techniques d’apprentissage profond pour segmenter automatiquement le coeur, la trachée, l’aorte et l’oesophage. En particulier, l’oesophage est particulièrement difficile à segmenter, en raison de l’absence de contraste et de variabilité de forme entre différents patients. Les réseaux profonds convolutionnels offrent aujourd’hui des performances de pointe en matière desegmentation sémantique, nous montrons d’abord comment un type spécifique d’architecture basée sur des skip connections peut améliorer la précision des résultats, par rapport à un réseau pleinement convolutionnel (FCN) standard. Dans une deuxième contribution, nous avons intégré des informations de contexte spatial au processus de segmentation, par le biais de réseaux collaboratifs, permettant les segmentations de chaque organe individuellement. Troisièmement, nous proposons une représentation différente des données, basée sur une carte de distance, utilisée en conjointement avec des réseaux adversariaux (GAN), comme un autre moyen de contraindre le contexte anatomique. Les méthodes proposées ont été évaluées sur une base d’images scanner de 60 patients. Les résultats montrent des résultats encourageants pour l’application clinique et souligne le potentiel des méthodes prenant en compte le contexte spatial dans la segmentation.