Thèse soutenue

Analyse et contrôle des ondes élastiques dans une structure phononique constituée d’inclusions poroélastiques dans un fluide.

FR  |  
EN
Auteur / Autrice : Athina Alevizaki
Direction : Bruno MorvanNikolaos Stefanou
Type : Thèse de doctorat
Discipline(s) : Acoustique
Date : Soutenance le 28/09/2018
Etablissement(s) : Normandie en cotutelle avec Université nationale d'Athènes. Faculté de Sciences. département physique
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : établissement de préparation : Université du Havre (1984-....)
Laboratoire : Laboratoire ondes et milieux complexes (Le Havre, Seine-Maritime)
Jury : Président / Présidente : Jean-Marc Conoir
Examinateurs / Examinatrices : Bruno Morvan, Nikolaos Stefanou, Jean-Marc Conoir, Jean-Philippe Groby, Jérôme Vasseur, Olivier Poncelet, Reveka Sainidou, Pascal Rembert
Rapporteurs / Rapporteuses : Jean-Philippe Groby, Jérôme Vasseur

Résumé

FR  |  
EN

Dans le présent document de thèse, une extension de la méthode de calcul de la diffusion multiple stratifiée est développée en y incluant des structures phononiques à base de diffuseurs sphériques poroélastiques saturés immergés dans un fluide, en combinant la théorie de Biot avec le formalisme de diffusion multiple. La méthode est alors appliquée à une étude théorique, bien au-delà de l’approximation à grandes longueurs d’onde d’un milieu effectif, de la réponse acoustique d’un milieu granulaire à double porosité saturé, formé d’un réseau cristallin compact de sphères poreuses rigides ou molles. On montre que la variation de la taille des pores et/ou celle de la porosité dans une gamme allant du millimètre au micromètre pour le diamètre des sphères altère d’une façon significative les spectres de transmission, réflexion, et d’absorption d’une couche plane d’épaisseur finie de ces matériaux. Les spectres présentés sont analysés par référence aux modes acoustiques de sphères poreuses isolées d’une part, puis par rapport aux diagrammes de dispersion des cristaux infinis correspondants. Une interprétation cohérente de la physique sous-jacente est donnée. Ces résultats mettent en évidence l’occurrence de nouveaux modes, localisés dans la sphère, provenant des ondes longitudinales lentes propres aux milieux poroélastiques. Ces modes induisent quelques caractéristiques remarquables dans le comportement acoustique de ces matériaux à double porosité, comme des bandes d’absorption non-dispersive larges ou étroites en fréquence et/ou des bandes d’arrêt directionnel. Les propriétés acoustiques de ces structures phononiques à l’échelle sub-micrométrique, i.e. en régime hypersonique (GHz), peuvent être évaluées expérimentalement par diffusion Brillouin. Dans ce document, une approche théorique élasto-optique rigoureuse, basée sur les fonctions de Green, est proposée afin de décrire la diffusion inélastique de la lumière due aux variations spatiotemporelles de l’indice de réfraction du matériau induites par des phonons. Dans ce cadre des expressions analytiques de l’intensité d’un faisceau de lumière diffusé par une particule sphérique dans le vide sont dérivées, permettant ainsi d’améliorer la précision et rapidité des calculs précédents. Les grandes lignes de ce développement théorique jettent les bases pour une description rigoureuse de cet effet dans le cas de cristaux phononiques composés de particules sphériques colloïdales.