Nouveaux matériaux d'électrodes à haute densité d'énergie pour batteries Na-ion
Auteur / Autrice : | Evan Adamczyk |
Direction : | Valérie Pralong |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 26/11/2018 |
Etablissement(s) : | Normandie |
Ecole(s) doctorale(s) : | École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de cristallographie et sciences des matériaux (Caen ; 1996-....) |
établissement de préparation : Université de Caen Normandie (1971-....) | |
Jury : | Président / Présidente : Jean-Marie Tarascon |
Examinateurs / Examinatrices : Valérie Pralong, Sophie Cassaignon, Marie Guignard, Sylvie Malo, Christian Jordy | |
Rapporteurs / Rapporteuses : Sophie Cassaignon, Marie Guignard |
Mots clés
Résumé
Dans les années à venir, la production d’Energie devra passer par l’utilisation de moyens plus respectueux de l’environnement tels que les énergies renouvelables. Leur caractère intermittent nécessite cependant la mise en place d’un stockage à grande échelle. Parmi les différentes technologies à disposition, les batteries Na-ion apparaissent comme une solution de choix grâce aux ressources de sodium illimitées. Dans ce contexte, nous nous sommes donc intéressés à la synthèse et la caractérisation de nouveaux matériaux d’électrodes positives pour batteries Na-ion. Les oxydes de métaux de transition et plus particulièrement le système Na-Mn-O a attiré notre attention pour les avantages que procure le manganèse en termes de non toxicité, de faible coût et d’abondance. Les phases Na4Mn2O5, lacunaire en oxygène, et Na2Mn3O7, lacunaire en cation manganèse, montrent des capacités spécifiques intéressantes par l’action de différents phénomènes redox. Na2Mn3O7 peut notamment être réduite, pour former la phase Na4Mn3O7 et oxydée, par l’action de l’activité redox de l’oxygène, donnant des capacités de 160 et 120 mAh/g, respectivement. Dans le but d’élargir l’étude à un métal de transition pouvant être oxydé à un état de valence +V, la phase isoformulaire Na2V3O7 a également été étudiée et un Na+ peut être réversiblement extrait de cette dernière.