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Introduction

S
ince the rise of the Information Age, the number of communication ex-
change in the world increased continuously, and exploded with mas-
sive computerisation and the expansion of Internet. Data is flourishing

through every aspect of our society. More than 200 000 SMS are sent every second,
administration procedure are replaced by HTML forms, fast-trading is supplanting
any trader, more than 100 000 planes take off every day, data centers use more than 5%
of the worldwide consumption. Data is everywhere, but data is chaotic. Produced by
billions of agents continuously, understanding and extracting sense from this data is
a necessity for efficiency and security reasons. For instance, cyberattacks are a serious
concern for enterprises or nations, but are not easily detected and require detection of
complex patterns in a huge amount of data.

Analysis of data is a wide domain that covers many approaches and concepts. Neu-
ral networks, for instance, are notably efficient to identify relations over data and pro-
duce deductions from it, but lack of techniques explaining the decisions made by it. In
contrast, Complex Event Processing (CEP) is a domain that try to identify behaviours
in data using logical models describing them. Most of the time, data is organised tem-
porally and behaviours are described with specific organisation of small observable ac-
tivities named events. This domain for data analysis is well covered, but, usually, does
not consider that data gathered on system might be erroneous, missing or corrupted.
Unfortunately, erroneous data might be a considerable trouble for identification of
behaviours by missing their apparition on data, or detecting false behaviours. Both
situations might be undesirable or dangerous. For instance, not detecting an intrusion
on the computer system of a company might results in stolen information. Similarly,
detecting a behaviour that does not exist might activates counteracting measures with
damageable consequences. For instance, detecting erroneously missile strikes during
a warfare situation may lead to unjustified reprisal measures.
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This thesis takes place in this context where data is not totally reliable but it is still
necessary to analysis it to identify a specific behaviour. Furthermore, this thesis aims
to extend a specific representation for CEP, named chronicles [Pie14], to be robust to
uncertainty. Literature on data uncertainty in CEP may focus on two different aspects.
The first one considers the uncertainty on the values from data, while the second as-
pect consider the existence of information in data. For instance, supposing a radar
detects that a car passes at high speed, first approach would consider uncertainty on
the value of the car speed, while the second approach would be interested to determine
if a car passed effectively. These two aspects, which are usually named respectively at-
tributes and events uncertainty, might be correlated, but not necessarily. In this thesis,
we focused on event uncertainty since a main aspect of the chronicle representation fo-
cuses on the relative positions of events between them, meaning that existence of these
events is an important requirement for the identification of behaviours with chronicles.

For this work, we aimed to produce an extension for the chronicle system allowing
uncertainty representation and estimation of recognition regarding data provided with
three properties as goals:

Scalability The extension should be able to be applied on realistic scenarii that might
potentially have numerous events provided on the data with realistic chronicles
to recognise. Optimally, uncertainty computation should be performed online.

Precision of computation The extension should assert that the chronicle recognition
probability is correct regarding a model, or at least being able to choose the
precision of the evaluation.

High-level prior information Usually, information provided in the data (events) are
relatively low level information easy enough to recognise and capture. This infor-
mation necessarily impacts the probability computation of the chronicle recogni-
tion. Nonetheless, it would be useful to be able to define, before inference, rules
that should be asserted. For instance, it might be possible to know that a known
behaviour occurred during the production of the data, but without necessarily
knowing when it happened precisely.

First part of Chapter 1 is a brief introduction to CEP, its particularities, and its
goals and presents at the same time the common vocabulary used by the community.
The second part presents some CEP representations selected for their extensions to
uncertainty excepts for the chronicle model that we aim to extend. Finally, the main
case study of a drone model, used in this thesis, is introduced.
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Chapter 2 introduces the main concept of uncertainty in CEP and presents the dif-
ferent aspects and general representations of uncertainty that appear in the literature.
State of the art is then detailed regarding different types of methods such as Markov
Logic Network (MLN), Bayesian networks or automaton-based.

Chapter 3 presents the different tools and methods that have been used for different
approaches of uncertainty representations in this work.

Chapter 4 introduces our first experimentations of a chronicle representation ro-
bust to uncertainty based on MLNs. In the first part, chronicle representation with the
Markov logic semantic is expressed as well as the uncertainty representation. The sec-
ond part discusses the results inconsistencies obtained with inference and investigates
on the possible explanations leading to these results. In particular, a set of experi-
ments is conducted on the algorithm WalkSAT, which is the core algorithm used for
inference with MLNs, to evaluate its efficiency on specific problems related to our
chronicle representation.

Chapter 5 presents a second approach solving data uncertainty for chronicles.
Since MLNs use a method based on stochastic local search to provide satisfiable solu-
tion of First-Order Logic (FOL) problems, this approach is based on exhaustive search
for SAT problems. Such approach requires using specific representations, like Binary
Decision Diagrams (BDDs), to solve a problem. Transformation from a logical prob-
lem to this kind of representation is performed with ProbLog. Last part of this chapter
presents the application of this representation to the drone model.

Finally, Chapter 6 presents, in the first part, an original ad-hoc method based on
Markov Chain Monte-Carlo (MCMC) with non-homogenous Markov models (NHMs)
solving scalability issues that may appear with ProbLog. This method separates the
uncertainty model from the computation of a chronicle recognition probability us-
ing data as constraints on the Markov model representing the system. The second
part details how to express high-level constraints with this method using chronicle as
prior knowledge thanks to transformations of chronicles into sub-graphs of constraints.
Third part presents extensions for this approach for speeding up computation and, no-
tably a model-checking approach for chronicle inference. Finally, last part details the
application of this method to the drone model and discusses the issues remaining with
such method.
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CHAPTER1
Complex event processing in the
nutshell
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T
his chapter presents an overview on CEP. In the first two sections, we re-
view the main goals and concepts of CEP without considering uncertainty
yet. We present a small state of the art focusing on the approaches that
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propose an extension to some form of uncertainty. It should not be seen as an ex-
haustive overview of existing formalisms, but as brief insight of CEP through specific
formalisms that have been extended for uncertainty. The last section presents a case
study of CEP that has been previously used in [Pie14] and that will be used later in
this thesis.

In Section 1.1, we introduce the goals of CEP and interesting transversal properties.
We also propose the semantics we chose in the scope of this thesis. Section 1.2 presents
some existing works and semantics used by the CEP community. Section 1.3 presents
the case study of a communication loss during a Unmanned Aerial Vehicle (UAV)
flight.

1.1 Main goals of Complex Event Processing

CEP consists in analysing information provided in a partial or linear time ordering to
recognise complex behaviours out of their trace. This information might be provided
by different sources and is usually represented on streams of data. Data is gener-
ally annotated with occurrence times, consequently each piece of data associated to
its time annotation is called an event. The main idea behind CEP is that events on
data streams provide relative low levels of information, but they might hide more im-
portant information when combined in specific patterns, which can be automatically
recognised from the data stream through computation. To distinguish these different
degrees of complexity on information, events from the data stream may be referred to
Low Level Events (LLEs) or Simple Derived Events (SDE), while recombined informa-
tion make patterns that are called complex events (CEs) or High Level Events (HLEs).
Unfortunately, among the community, lots of different terms exist that may easily be
ambiguous. For instance, terms like events, behaviours, or activities may refer to both
LLE and CE, which is literally due to a lack of terms to distinguish real activities and
their equivalent computerized counterparts, both being referred to as events.

1.1.1 Semantics

For the sake of clarity, let us precise the semantics that will be used along this thesis.
To this end, semantics, we will define it in parallel with a small illustration of a hurri-
cane alarm (cf. Figure 1.1). Along with this model, a graphical representation of the
semantic structure is provided on Figure 1.2. The hurricane alarm is a simple system
made of an alarm that is supposed to ring when a hurricane appears. The formation
of the hurricane or the alarm ringing are both states of the physical world during a
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Figure 1.1: A simple hurricane alarm scenario producing a data-stream.

period of time, which we call simple activities. These simple activities might be com-
bined or ordered together to form more complex activities that we call behaviours. For
instance, in our model, if during a period of time the alarm was not triggered during
a hurricane, it might be described as a behaviour as it is composed of simple activities.
Both simple activities and behaviours might be referred as activities since they describe
states of the world even if they might be at different scales.

The purpose of CEP is to represent and automatically process these concepts so
all activities have their computerized version. Consequently, simple events (or LLEs)
are the computerized representation of simple activities and complex events (or CEs)
the computerized representation of behaviours. As for activities, both complex events
and simple events might be referred to as events. Simple events are generally the
pieces of data provided in the data stream. In our illustrative example, the data
stream might be the recorded logs indicating when the alarm is either ringing or
in stand-by and considered as a simple event. A complex event would be a com-
bination of LLEs that try to model a behaviour using a specific language that de-
scribes the potential relations between events. For instance, with our model, previ-
ously described behaviour of alarm failure using an invented language might be repre-
sented as CE with fail_alarm: hurricane and no alarm, between t and t′. Gen-
erally, these CEsare reused to define new CEs and model more complex behaviours.
For instance, alarm_failure_lasts_3:fail_alarm lasts 3 min models a behaviour
where the alarm did not work for three consecutive minutes using the previously de-
fined fail_alarm.

Both LLEs and CEs might embed attributes, that are values associated to the events.
Conceptually, attributes are any kind of connected information observed at the time
of an event. For instance, attributes for an event alarm, when an alarm triggers, might
be numerical values like the wind speed at this moment, or non-numerical values
like the ID of the alarm. These attributes might be used to define the CE of interest.
Nonetheless, some approaches do not consider events with attributes and make only
use of 0-arity events.
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Figure 1.2: Structural representation of our semantic for activities and
events.

1.1.2 Interesting properties of CEP systems

The main goal of CEP is to provide a formalism to express CEs and methods to recog-
nise them from data streams. Relative to this main goal, the community often refers
to different concepts of interest which may be seen as sub-goals:

Time representation Time might be seen differently along the community and, conse-
quently, represented according to these points of view. In general, time is linear
and may be discrete or continuous, events are represented as time points or in-
tervals, but it might happen that some models do not describe time as a value
on a clock and just uses a total or partial order between the events on streams.

Expressiveness It refers to the formalism used to describe CEs and the variety of
possible combinations of behaviours to be extracted from data streams that it
captures. Consequently, with sometimes very ad-hoc constructs, it may be hard
to say if a formalism is more expressive than another and any choice will be
indubitably subjective. Nonetheless, some constructs are very commonly found
and it is possible to assess formalisms relatively to a standard basis of main
operations such as that proposed by Alevizos et al. in [Ale+17] to evaluate :

• Sequence: Two events following each other in a given time order.

• Disjunction: Either of two events occurring, regardless of temporal relations.

• Iteration: An event occurring N times in sequence, where N ≥ 0.

• Absence: Absence of event occurrence.

• Selection: Select those events whose attributes satisfy a set of predicates/-
relations, temporal or otherwise.
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• Projection: Return an event whose attribute values are a possibly trans-
formed subset of the attribute values of its sub-events.

• Windowing: Evaluate the conditions of an event pattern within a specified
time window.

In this case, the choice of operations to define expressiveness is clearly oriented
towards time representation and attributes management which are two main
goals generally pursued in CEP. However, sometimes only one of the two goals
is sought, in which case it is possible to choose a set of operations focusing more
on the relevant aspect.

Efficiency Efficiency usually refers to computation speed. It is an important goal as
many models try to analyse data online or in real-time. Even when analysis is
not supposed to be performed online, CEP goal would still be to process large
amount of data in an acceptable amount of time, which is basically the same. In
general, the speed of a model is expressed in LLEs parsed per second, rather
than just the computation time.

Multiplicity Most CEP formalisms do not just focus on answering whether a specific
behaviour exists in a stream, but will also memorise all occurrences of it. Multi-
plicity may be important when a CE is dependent on multiple intermediate CEs.
On this objective, every recognition should be memorised, even if restrictions
may be specified to help computation. For instance, windowing, that introduces
a notion of decay on the events which removes the oldest events that might be
irrelevant, is commonly used with this purpose.

Historisation Historisation is somewhat related to multiplicity as it is the ability to
track all the events that appears in a recognition of a CE. As multiple CE oc-
currences may appear on the data, they are not composed of the same LLEs.
Historisation keeps tracks on which LLE leads to a CE occurrence.

1.2 A brief state of the art on complex event processing

1.2.1 Event calculus

Event Calculus (EC), introduced by Kowalski and Sergot [KS89], is a framework for
reasoning about time and events. Semantic of EC is a logical representation based on
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Predicate Meaning

happensAt(E, T) Event E is occurring at time T
initially(F = V) The value of fluent F is V at time 0
holdsAt(F = V, T) The value of fluent F is V at time T
initiatedAt(F = V, T) At time T a period of time

for which F = V is initiated
terminatedAt(F = V, T) At time T a period of time

for which F = V is terminated

Table 1.1: Main predicates of the EC. [Art+12a]

Horn clauses, which use a set of predefined predicates. These predicates may define,
for instance, the begining or the end of a CE recognition (cf. Table 1.1).

Specific changes and improvements have been done since [KS89] ([Art+10; ASP12;
CM96; CD97; Far+05]), but foundations of EC are usually composed of simple events,
fluents, time points and a set of specific predicates. Simple events are axioms that capture
any basic information at a specific moment and corresponding to a simple activity
from the system under observation. Each simple event may be attached to a set of
attributes carrying information related to this event. Fluents are properties derived
from logical rules and observed events. Each fluent can take different values and,
contrarily to events, possesses an inertia principle which set a specific value to a fluent,
over time until anything modifies it. They may be seen as a property of the system
or the agents. For instance, in the hurricane alarm scenario, suppose the alarm is
able to provide the speed of the wind, a possible fluent might be the intensity of
the hurricane regarding the Saffir-Simpson scale1. The fluent keeps the same value
along time, corresponding to the category of the hurricane detected. The value of
this fluent is only modified if wind intensity changes. Note that wind intensity might
be measured only periodically, but the fluent value remains until new information
modifies it. Time points are just real values used to indicate time of actions or value
modifications. Predicates are the core of EC as they describe the relations between
simple events, fluents and time. Different types of predicates exist among the literature
which serve specific purposes like continuous change. A good idea of this predicate
diversity might be seen through the work of Shanahan and Miller [Sha99; MS02; MS99].
Table 1.1 presents some of the most common predicates of the EC. The predicates are
associated together in a Horn clause which describes a new behaviour (defined in a

1The Saffir-Simpson scale classifies hurricane regarding their intensity in five categories. Winds for a
category 1 hurricane go at 43-49m/s, while winds for a category 5 go above 70m/s
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new fluent).
As a matter of example from [Art+12b], equation 1.1 describes the rule for the

fluent reducing_passenger_satisfaction that indicates that the satisfaction of a passenger
using public transportation starts to decrease when the temperature is high inside the
bus (event) and the bus is not punctual (fluent). In this rule, punctuality is a previously
defined fluent.

initiatedAt(reducing_passenger_satis f action(Id; VehicleType) = true, T)←
happensAt(temperature_change(Id, VehicleType, very_warm), T),
holdsAt(punctuality(Id, VehicleType) = non_punctual); T)

(1.1)

Finding a behaviour within the temporal data will consist in solving a logical prob-
lem and identify when a fluent modelling this behaviour takes a specific value. These
problems are usually solved using classic approaches like Prolog.

1.2.2 SASE

Gyllstrom et al. proposed their CEP system called SASE [Gyl+06]. SASE is a query-
based approach, the semantics of which is similar to SQL. A query is generally struc-
tured as follows:

[FROM <stream name>]
EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window>]
[RETURN <return event pattern>]

where:

• FROM clause provides the name of the stream parsed

• EVENT clause describes the structure of the CE pattern.

• WHERE clause enforces value-based constraints on the captured events (e.g. im-
posing ID identity between two elements).

• WITHIN clauses defines a sliding window that guarantees that the pattern defined
in the EVENT field is recognised in a specified time interval.

• RETURN clause defined the “shape" of the CE recognised. Generally it is just a
listing of attributes of interest.
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As a matter of example, the query (Q1), from [Gyl+06], provides a good insight of the
model.

Q1:
EVENT SEQ(SHELF_READING} x, !(COUNTER_READING} y),

EXIT_READING} z)
WHERE x.TagId = y.TagId ^ x.TagId= z.TagId
WITHIN 12 hours
RETURN x.TagId, x.ProductName, z.ArealId,

_retrieveLocation(z.ArealId)

This query is supposed to capture a shoplifting behaviour regarding the actions per-
formed on objects identified with RFID tags. It describes that an item is taken from a
shelf and taken out of the store without being checked2.

Construction of CEs may be defined using sequential time pattern, negation or
assertion on values. Negation describes that an event does not occur. If events
are defined before and after the negation in the pattern, the range of the negation
is limited between the recognition of these events. For instance, in the query Q1,
!COUNTER_READING y describes that this event should not be observed between an
event SHELF_READING and an EXIT_READING event, but may be detected outside this
range.

SASE+ [DIG07] is an extension of the model proposed by Diao, Immerman, and
Gyllstrom that allows pattern description to use Kleene closure [HM00]. Formally, it
is possible to specify a CE with an iterative description. For instance, in the EVENT
clause, the semantic Event_type+ e[] describes that the event e might be recognised
an unspecified number of time but at least once. Furthermore, it is possible to specify
constraints on these events: constraints may be defined either on a specific event or as
relations between successive events. For instance, the query below:

Q2:
PATTERN SEQ(STOCK+ a[ ])
WHERE skip_till_next_match(a[ ]!)
{ [symbol] ^
a[1].price = 10 ^
a[i].price > a[i-1].price ^

2READING term refers to the RFID sensors supposed to read RFID tag from the articles.
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a[a.LEN].price = 20 }
WITHIN 1 hour
HAVING avg(a[].volume) > a[1].volume
RETURN a[1].symbol, a[].price

captures a list of products where the first one should cost 10, the last 20, and, overall,
an item should cost more than the previous one in the sequence. The first predicate
[symbol] asserts that the list of items share the same symbol. Finally, it is even possible
to define aggregation functions like sum and avg to describe a general constraint. The
clause skip_till_next_match describes an event selection strategy. Event selection
strategies define how events should be selected with the Kleene closure depending
on the constraints and, by correlation, how to terminate the Kleene closure. Four
strategies exist (cf. Figure 1.3):

• Strict contiguity enforces two selected events to be strictly continuous in the input
stream. If iterative conditions are not fulfilled, recognition of the CE abort. For
instance, in Figure 1.3a, abc sequence is only recognised when all events are
continuous.

• Partition contiguity is a relaxation of strict contiguity where it is needed only
into the partition3 defined by specific constraints. For instance, [symbol] creates
an event partition with equivalent symbols and iterative conditions should be
fulfilled contiguously inside it. For instance, in Figure 1.3b, the data-stream is
separated into two partition: one for the letters and one for the numbers. Then
sequence abc is recognised if they are continuous in the partition.

• Skip till next match releases contiguity in a partition and skips events not fulfilling
the conditions defined. As this strategy might potential ignores all the skipped
events, it continues until reaching a termination criterion. For instance, in Fig-
ure 1.3c, recognitions may skip events not fulfilling the conditions.

• Skip till any match computes the transitive closure over the relevant events. Such
conditions allow the recognitions of all possible matching sequences indepen-
dently of the order that they are appearing in the data-stream. For instance,
Figure 1.3d, sequence abc is recognised two times, even if the blue one is a valid
recognition4. With a skip till next match condition, the orange sequence would

3A partition is a subset of the input stream usually defined by specific constraints like selecting values
in a defined range.

4Figure 1.3d presents Skip till any match on a smaller example, since a stream like Figure 1.3a produces
16 recognitions, which is difficult to represent clearly.
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a 1 b c a b c c 2 a c b c

(a) strict contiguity

a 1 b c a b c c 2 a c b c

a 1 b c a b c c 2 a c b c

a 1 b c a b c c 2 a b c c

(b) partition contiguity

a 1 b c a b c c 2 a c b c

(c) skip till next match

c a b f c c 2

(d) skip till any match

Figure 1.3: Graphical examples of SASE strategies.

have not been recognised since the blue sequence reached a termination criterion.
Another example might be to find the longest sequence of increasing values for
a data-stream < 1, 2, 3, 1, 5 >. Skip till next match would return < 1, 2, 3 >, while
Skip till any match would return < 1, 2, 3, 5 >.

Termination criteria are an important concept with Kleene closure since it may
define whether a recognition is valid or not, especially for strategies like skip till next
match or skip till any match. In SASE+, three termination criteria are available:

• Condition on the last event selected is a termination criterion specified on the
query. For instance in query 2, a[a.LEN].price = 20 defines a termination cri-
terion on the price value. If this condition is verified, the query produces a
recognition.

• Next component of the pattern applied only on selection strategies skip till next
match and skip till any match. When an event is valid for the recognition and fulfils
all the condition, it is a sufficient termination criterion. Nonetheless, recognition
termination of a CE does not imply the recognition process to end. Formally,
if a future event is valid with all the previous events, it would produce a new
recognition.
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• Window constraints is the simplest form of termination as it forces Kleene clo-
sure to terminate if the window constraint specified in the WITHIN clause is
reached. If all the constraints have not been fulfilled, this termination criterion
does not produce a recognition.

Automata-based representation The recognition process for SASE and SASE+ is
based on linear Non-deterministic Finite Automata (NFA). Each query is defined as a
NFA to represent the different states of recognitions. Having a non-deterministic prop-
erty allows the model to ignore valid events with the aim of finding other potential
recognitions5. The NFA is combined to a match buffer to keep track of the potential
matches. The choice of state transition or buffering matching is highly correlated to
the event selection strategy. We do not go into further details here, but the reader may
refer to [DIG07] for a full account.

1.2.3 TESLA

Trio-based Event Specification LAnguage (TESLA) [CM10] is a CEP approach pro-
posed by Cugola and Margara which, like SASE, uses a semantic close to SQL to
define CEs. As stated in its name, TESLA is constructed above TRIO, which is a first
order language augmented with temporal operators.

TRIO [GMM90; MMG92] semantics is closely related to temporal logic, as we may
find similar operators from TESLA that are equivalent to LTL operators [Pnu77], like
Until and AlwF that correspond respectively to U and ♢ in LTL. One of the important
aspect is that it allows operators with a specific value for time instants or intervals.
For instance, TRIO specifies operators like Lasts(A, t) that defines that a term A holds
from the current time until t, or Next(A, t) that refers to the closest instant t in the
future where A is true.

CEs in TESLA are described using the following semantic:

de f ine CE(Att1 : Type1, . . . , Attn : Typen)

f rom Pattern
where Att1 = f1, . . . , Attn = fn

consuming e1, . . . , en

(1.2)

where
5Especially in skip till next match and skip till any match strategies.
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• The define field provides name and attributes of the CE

• The from field indicates the LLEs used and conditions that should apply to vali-
date a recognition,

• The where field describes how the attributes of the CE are defined regarding
events and event attributes used in the from field,

• The consuming field that define if an event used for recognition remains valid for
future recognitions of the same rule.

TESLA allows different kind of patterns:

• Event composition allows describing CEs using multiple sequential sub-events.
The sequence is described using a within operator. Three operators are defined
for event composition: each-within, first-within and last-within. For instance, the
following rule :

de f ine Fire(Val)
f rom Smoke(Area = $x) and

each Temp(Val > 45 and Area = $x)
within 5min f rom Smoke

where Val = Temp.Val

(1.3)

describes a CE Fire that is recognised if a temperature above 45° is detected
within five minutes before detecting smokes. Choice of operator impacts the
selection policy for the recognition. Operator each-within recognise the CE with
every Temp event above 45° for each Smoke event in the range. Operators first-
within and last-within only recognise the CE with respectively the first and last
Temp event above 45° in the range for each Smoke event. It is possible to use, in a
single pattern, multiple within operator, which may be relative to different events
and times.

• Parametrisation allows defining rules between attributes of the events used for
recognition in the field where. In rule 1.3, parametrisation is used to specify that
the Area, where smoke and a high temperature are detected, is the same.

• Negation allows defining a pattern where an event should not appear into a spec-
ified interval. This interval may be declared either using two events or using an
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event and a time. For instance, rule 1.3 may be modified into rule 1.4, which spec-
ifies that it should not rain between the smoke event and the high temperature
event.

de f ine Fire(Val)
f rom Smoke(Area = $x) and

each Temp(Val > 45 and Area = $x) within 5min f rom Smoke and
not Rain(Area = $x) between Temp and Smoke

where Val = Temp.Val
(1.4)

• Event consumption defines that an event occurrence may only be used only once
for recognitions of a given CE. If an event occurrence may appear in two recog-
nitions of the same CE, only the first recognition performed is valid.

• Hierarchies of events allows defining CEs using CEs that are already defined, ex-
cept if one of the events creates a circular dependence. Unfortunately, it is not
specified clearly in [CM10] what time is associated to the recognition of a CE
which makes the behaviour of within operators unclear when using CEs in the
pattern definition. For instance, given a CE c used in another CE c′, if c is recog-
nised between time t and t′, it is not defined if the operator within is valid if t is
in the range of the operator, if t′ is in the range of the operator, or if both should
be in the range of the operator.

• Iterations, or Kleene closure, are theoretically possible to define using multiple
rules definitions of the same CE. Even if possible, this possibility is not embed-
ded directly in the semantics and needs some tweaks.

Automata-based representation The recognition process uses an automaton model
similar to SASE6. Each rule is transformed into an automaton where constraints on
events selections are linked to the edges of the automaton. Multiple instance of an
automaton might be created in parallel to recognise every occurrence. The full system
is embedded in a CEP middleware named T-Rex [CM12].

1.2.4 ONERA Chronicles

The chronicle system was initially proposed by Ornato and Carle [OC94a; OC94b]. The
authors aimed at extending the intention recognition domain to be able to recognize a

6Note that SASE is based on NFAs while TESLA uses deterministic automata
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behaviour in data that may contain unrelated activities with the behaviour. Chronicle
Recognition System (CRS) is based on a temporal language describing the behaviour
to identify using typed LLE. The semantic is composed of the following operators to
describe CEs named chronicles :

• Sequence, conjunction, disjunction of events.

• Non-occurrence of a chronicle within the scope of recognition of a second chron-
icle.

• A delay operator.

• A cut operator aiming at reducing the potential number of combinatorial recog-
nitions.

• An indexation operator that identifies simple events related to each chronicle
recognition.

Time is discrete and represented as a counter and recognition of chronicle may be
re-injected into the data stream to be potentially used as an event for more complex
chronicles.

This model is implemented using duplicable automata. Each automaton might be
duplicated each time a LLE is recognised and takes place in a CE recognition, which
is also how a non-deterministic component is introduced in the recognition model.
Consequently, each automaton represents an occurrence of the CE it models. This
method is quite similar to the one used by SASE with T-Rex middleware [CM12].

This representation of chronicles changed with the work of Bertrand, Carle, and
Choppy [BCC07; BCC08; Ber09; CBC09], who introduced a Petri-net-based represen-
tation for chronicle recognition. The main formalism has been refined multiple times
since [OC94a] (e.g. in [Ber09] and [CCK11]), but we focus on the latest formalism
proposed by Piel [Pie14].

The formalism proposed in [Pie14] introduced many notable changes compared to
previous works:

• It is now possible to specify attributes associated to events. There is no particular
restriction on the number, the type or the value of attributes. They may be
modified during the analysis, renamed or associated to define the value of CEs
attributes. For instance, given two events A and B that have respectively an
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attribute x and y, a CE C might be defined with an attribute z defined by the
attributes x and y such as A(x) ∨ B(y) → C(z = x ∨ y).

• Existing operators are extended with Allen’s interval algebra [All83] and other
delay operators.

• Time does not need to be a counter any more and may be represented continu-
ously, with a function “Look-ahead” providing the next instant where computa-
tion is needed.

Operators definition We present briefly the existing different operators as we will
refer to them quite often along this thesis. We just detail the temporal constraints
used to compose chronicles together, but it should be kept in mind that conditions
on attribute values may be defined together with the operators. By convention, recog-
nition of a chronicle Ci is written ri. Recognition ri happens in a interval of time
[Tmin(ri), Tmax(ri)] where Tmin(ri) and Tmax(ri) are respectively the first and last in-
stants of the event recognised as ri.

• A sequence C1 C2 is recognised if a recognition r1 happens be-
fore a recognition r2. The temporal constraint to be asserted is
Tmax(r1) < Tmin(r2).

C1 C2

• A disjunction C1||C2 is recognised either if a recognition r1 or if
a recognition r2 happens.

• A conjunction C1&C2 is recognised if both recognitions r1 and
r2 happen (without any condition on their time positioning, con-
trarily to the sequence).
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• An absence (C1)− [C2] is recognised if a recognition r1 happens
but r2 does not happens during the interval of time of r1. The
temporal constraint to be asserted is
∀r2, Tmin(r1) > Tmin(r2) ∨ Tmax(r1) < Tmax(r2).
It is possible to define variants of absence with either inclusive
or exclusive intervals:

– temporal constraint for (C1)−]C2[ asserts that
∀r2, Tmin(r1) ≥ Tmin(r2) ∨ Tmax(r1) ≤ Tmax(r2);

– temporal constraint for (C1)− [C2[ asserts that
∀r2, Tmin(r1) > Tmin(r2) ∨ Tmax(r1) ≤ Tmax(r2);

– temporal constraint for (C1)−]C2] asserts that
∀r2, Tmin(r1) ≥ Tmin(r2) ∨ Tmax(r1) < Tmax(r2).

C1

C2

• A chronicle C1 meets C2 is recognised if a recognition r1 finishes
at the exact moment that a recognition r2 starts. The temporal
constraint to be asserted is
Tmax(r1) = Tmin(r2).

C1 C2

• A chronicle C1 overlaps C2 is recognised if a recognition r2 starts
after the start of a recognition r1, but finishes after r1 finishes.
The temporal constraint to be asserted is
Tmin(r1) < Tmin(r2) < Tmax(r1) < Tmax(r2).

C1

C2

• A chronicle C1 starts C2 is recognised if a recognition r2 starts
at the same time as a recognition r1, but finishes after it. The
temporal constraint to be asserted is
Tmin(r1) = Tmin(r2) < Tmax(r1) < Tmax(r2).

C1

C2

• A chronicle C1 during C2 is recognised if a recognition r2 starts
before a recognition r1 and finishes after it. The temporal con-
straint to be asserted is
Tmin(r1) > Tmin(r2) ∧ Tmax(r1) < Tmax(r2).

C1

C2

• A chronicle C1 finishes C2 is recognised if a recognition r2 starts
before a recognition r1 starts, but both finish at the same time.
The temporal constraint to be asserted is
Tmin(r1) > Tmin(r2) ∧ Tmax(r1) = Tmax(r2).

C1

C2
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• A chronicle C1 equals C2 is recognised if both recognitions r1

and r2 happen over the very same time interval. The temporal
constraint to be asserted is
Tmin(r1) = Tmin(r2) ∧ Tmax(r1) = Tmax(r2).

C1

C2

• A chronicle C1 lasts δ is recognised if a recognition r1 happens
and lasts exactly δ. The temporal constraint to be asserted is
Tmax(r1)− Tmin(r1) = δ.

C1

δ

• A chronicle C1 at most δ is recognised if a recognition r1 happens
and lasts at most δ. The temporal constraint to be asserted is
Tmax(r1)− Tmin(r1) < δ.

C1

δ

• A chronicle C1 at least δ is recognised if a recognition r1 happens
and lasts at leasts δ. The temporal constraint to be asserted is
Tmax(r1)− Tmin(r1) > δ.

C1

δ

• A chronicle C1 then δ is a chronicle delayed from a duration δ

after the end of a recognition r1. Recognitions of such chronicle
are associated not to an interval but to a time point t where
t = Tmax(r1) + δ.

C1 δ

For the sake of conciseness, we do not detail further, especially on the attribute man-
agement formalism which include naming and transformation functions and predi-
cate definitions on attributes. For more details, the reader should refer to [Pie14]. This
formalism has been implemented into a C++ library named Chronicle Recognition
Library (CRL)7 that will be used later in this thesis.

1.3 Drone model

Along this thesis, we have applied our approaches on a specific context of communi-
cation loss during an Unmanned Aircraft (UA) flight between a UAV, its pilot on the
ground and the Air Traffic Control (ATC). In section 1.3.1, we describe the detailed
context and the problematic due to uncertainty. In section 1.3.2, we present how this
case study has been modelled and describe the different variations that may be used.

7https://github.com/ChronicleRecognitionLibrary/crl
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Figure 1.4: Schematic representation of the drone loss communication
study case

1.3.1 Communication loss between three agents during a drone flight

The growing interest and developments on UAV usage raise many problems of safety.
In this thesis, we used a case study of a potentially dangerous situation that may
happen when communication with a drone is lost.

Our case study, graphically represented in Figure 1.4, considers three agent: the
UA or drone controlled remotely by the pilot via the Remote Pilot Station (RPS) us-
ing the telecommand (TC). The UA may send various information (speed, topography,
anti-collision system, etc.) to the remote station through telemetry (TM). RPS and UA
may be described as one entity named Unmanned Aircraft System (UAS)8. Further-
more, the pilot may occasionally need to contact the ATC established through radio
communication exchange (Voice).

Due to different unpredictable factors, like a system failure or specific topology,
communication between the agents may be lost. It may be any of the three (TC, TM,
voice), or possibly all at the same time. In such situations a full protocol defines
precisely the behaviour that each agent should follow9. Without possible communica-
tion, the agents have to deduce, regarding their situation and their partial individual
knowledge, in which state the unreachable agent is.

8 ‘an unmanned aircraft and associated elements [. . . ] required for the pilot in command to operate safely and
efficiently in the national airspace system.’ [Hou12].

9Described in section 1.3.2.



1.3. Drone model 35

In a previous work [Pie14], CEP was used on this case-study to identify unplanned
risky situations. For instance, when an agent detects a communication loss and trig-
gers back-up protocol while another remains in its original state leading to potential
conflicting decisions between these two agents. LLE were schematically the actions
done by each agent on the system or their change of state. However, this first approach
used no uncertainty representation so recognition of a chronicle requires to know the
events produced by all agents, which is contradictory with the current study case that
focus on loss communication. Indeed, such approach would require an omniscient
observer on system which is not achievable in practice.

On the other hand, introducing uncertainty into this CEP model with probabilities
allows each agent to have its own “local probabilistic observer" that estimates the current
state of the others when communication is lost. This would allow each agent to detect
dangerous behaviour with partial or contradictory information.

1.3.2 Problem model: telecommand and radio losses

We can now present the protocol that should be followed by the agents in case the
telecommand or the radio is lost. We describe these scenarii separately but, as we
explained earler, nothing prevent they append together. Then, we present more precise
examples of dangerous situations where two agents have different understanding of
the system state.

Protocol followed by each agent regarding the different situation is described in the
state diagram in Figure 1.5. The diagram is separated between the three agents: UA,
RPS, and ATC. Each agent is decomposed into sub-systems. A sub-system represents
a functionality controlled by the agent or a specific knowledge it may possess about
the overall system situation. For instance RPS Voice sub-system describes if the RPS
is aware of a potential radio communication loss. Each sub-system is a set of states
that have to be followed in a specific order regarding the system evolution. Arrows
between states describes this order and necessary conditions to trigger a state change
and may eventually associate to a specific action to be performed by the agent. This
information is labelled on arrows into three different parts: event, condition and action
and written event [condition]/action.

Telecommand loss In this part, we describe the case of telecommand loss, meaning
the pilot is not able to send order to the drone. Without losses, each agent is in Nominal
state and the drone follows a predefined flight plan known by both RPS and ATC.
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Figure 1.5: State diagram of telecommand and radio loss.
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If the UA detects a telecommand loss, sub-system UA TC goes to state UA TC Quick
Recovery Procedure where it will try quick attempts to recover the signal. If it fails
to retrieve it, the drone switch to state UA TC Unrecovered. In this state, the drone
should emit, with its transponder10, a code 7700 that indicates an emergency. This
code might be detected by the ATC. At the same time, the UA changes its state in
the sub-system UA Pilot in UA Pilot Transitory Mode. After a fixed delay, it passes
in UA Pilot Rerouting Mode where it follows a predefined emergency flight plane.
This flight plan might be changed again if the telecommand signal is back and RPS
and ATC decided to follow the original plan.

In case of telecommand loss, RPS may detect it and change his state in the TC sub-
system from RPS TC Nominal to RPS TC Quick Recovery Procedure. In this state,
the pilot tries quick measures to recover the telecommand. After a delay and without
being able to recover the signal, the RPS change his state to the RPS TC Long Recovery
Procedure. At this moment, the pilot should try to contact the ATC to warn him
about the situation. In the subsystem RPS-ATC connection, state changes to Need
Contact ATC Urgency. If, before ATC is contacted, TC signal comes back, RPS can
come back to his nominal state. When ATC is acknowledged of the situation that the
initial flight plan may have been changed automatically to the emergency one by the
drone, RPS switches to ATC Contacted Urgency state and stays in it until the end of
the flight or if the telecommand signal comes back. This exchange requires the voice
connection to be working. In this last scenario, RPS change his state to Need Contact
ATC End Urgency and has to re-contact the ATC to take a decision about the flight
plan to follow. ATC and RPS may decide to reselect the original flight plan or keep the
emergency one. After the communication, both agents may return to their Nominal
states. It may happen that the ATC detects an emergency before the RPS. In this
situation, they may contact the RPS to obtain information. When they are contacted,
they should check if control over the drone has effectively been lost (Checking TC
state). If telecommand is lost, protocol restart from nominal as described previously.
In contrary, if telecommand is working, the RPS has to contact a second time the ATC
to confirm the flight plan and invalidate the emergency (in state Need Contact ATC
Invalidation Urgency).

For the ATC, two situations may arise accordingly to the behaviour of the other
agents. In the first case, the pilot contacts it to warn it about the loss of the telecom-
mand changing the state of the sub-system ATC Service to ATC Rerouting Mode Not

10A transponder is an automated transceiver in an aircraft that emits a coded identifying signal in
response to an interrogating received signal.
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Selected. RPS may indicates immediately that rerouting has been selected by the
drone changing the ATC state to ATC Rerouting Mode Confirmed. If the ATC has
no information about the rerouting, it will infer it after a delay and go in state ATC
Rerouting Mode Inferred. From this state, a contact with the RPS may confirm or
deny the rerouting, but the contact should come from the RPS. The second situation
arises when the ATC detected a 7700 code emitted by the drone, but the RPS did not
try to notify it. In this situation, ATC should contact the RPS. Contacted or not ATC
switches to ATC Urgency To Be Confirmed. After a delay or if the RPS reached him
to confirm the emergency, state change to ATC Rerouting Mode Not Selected and
protocol follows the same scheme as in the first situation.

Radio signal loss It may happen that the radio communication fails. Reasons might
be the same as for the telecommand loss since the radio signal goes through the UA.
RPS and ATC agents have both a sub-system Voice describing their current under-
standing of the radio signal state. There is no special procedure to follow in case of
radio loss except that the RPS has to ask the drone to emit 7600 code. This warns
the ATC of the communication loss. Nonetheless, losing the radio signal has a huge
impact on the protocol described previously. Indeed, each time RPS and ATC have to
communicate, it requires voice communication to be operational. If both telecommand
and radio are lost, some steps of the protocol are not reachable any more and may lead
to contradictory beliefs regarding a situation. Let us illustrate this by a simple exam-
ple. Every agent starts in nominal states, but, due to technical issues telecommand
is suddenly lost. During the quick checks performed by the RPS, radio breaks down
too. When the RPS reaches the Long recovery Procedure, he should contact the ATC
(Need Contact ATC Urgency state), which is impossible due to the radio signal loss.
In the meantime, UA detects the telecommand loss and emit a 7700 code. ATC detects
the emergency and may conclude, after a while, to a rerouting. But during this time,
RPS retrieved the telecommand before the drone entered in rerouting mode. As situa-
tion went back to normal, for the RPS point of view, he may return to the ATC Nominal
For RPS state. ATC receives the nominal code, but its protocol does not permit it to go
back to nominal state, and he should still assume the rerouting while the RPS follows
the initial flight plan.

We presented in this section the drone model that we used in this thesis as a support
for our experimentations on uncertainty integration with chronicles. We will use it in
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Chapters 5 and 6 with slightly different representations to adapt it to the uncertainty
model that we use. Each alternate version is presented in its corresponding part.
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T
his chapter presents an overview on CEP under uncertainty. We first dis-
cuss the various possible understandings of uncertainty among the works
from the CEP domain or related to it. We then present the state-of-the-

art of CEP under uncertainty regarding the different approaches used like MLNs,
Bayesian networks and automaton-based methods.

Section 2.1 provides an analysis of uncertainty on CEP and more specifically, we
tried to express how it is understood along the community. This same section puts into
perspective the differences between goals and perspectives of CEP with and without
uncertainty incorporated on the models. State-of-the-art starts in Section 2.2 with a
review of methods based on MLN, followed by the Bayesian networks approaches in
Section 2.3, and automaton-based methods in Section 2.4. Finally, Section 2.5 presents
some approaches based on less common techniques or representations.

2.1 Understanding uncertainty on Complex Event Processing

Before presenting a state of the art on CEP under uncertainty, we need to discuss
shortly the actual meaning of “uncertainty” in this context. Indeed, the same word
“uncertainty” appears to have different meanings among the existing works. Even if it
might be difficult to draw a precise boundary along the different interpretations of un-
certainty, two main categories may be described: uncertainty on data and uncertainty
on patterns.

2.1.1 Data Uncertainty

Data uncertainty commonly refers to noisy or corrupted data streams. In this case,
different kinds of uncertainties may be distinguished :
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• Event uncertainty. For many systems, information is gathered through sensors,
which are not necessarily always reliable and might produce inconsistent data.
Two possible scenarii could be described.

1. The first possibility is that a real simple activity goes undetected and conse-
quently the corresponding LLE does not appear in the data stream. Missing
an LLE obviously has a huge impact on the recognition process since all pos-
sible CEs depending on it will not be recognised.

2. The second possibility is that LLEs have been produced that are inconsistent
with reality. By inconsistent, we mean that an LLE literally appears on
the data stream, but does not match any real simple activity, which may
be interpreted as a noise. Consequences are quite similar to those of a
missing LLE, as it is possible to recognise CEs while the correct behaviour
did not occur. But in general, missing an LLE will produce false negatives
during the recognition process, while an inconsistent LLE will produce false
positives.

3. A third possibility may be considered as event uncertainty when a simple
activity is registered as LLE of an inconsistent type. Formally, this possibil-
ity might be seen as the outcome of the composition of the two previous
ones, where a simple activity goes unrecognised, but an inconsistent LLE is
produced at the same time.

• Uncertainty on attribute values. Even if LLEs might be correctly detected, it is pos-
sible to have uncertainty on their attribute values. For the same reasons as for
event uncertainty, sensors that capture this kind of information are not immune
to faulty detections. According to the type of attributes embedded on events,
uncertainty may be managed differently. For instance, if events have a finite
discrete number of attributes, each set of possible values might be considered
as a distinct LLE and managed with the same strategies than event uncertainty.
But, on many cases, attribute values are continuous and might not be easily dis-
cretised, thus cannot be formally considered as variant of the event uncertainty
issue and must be handled differently.

Dealing with event and attribute value uncertainties in the same method is not
common and existing approaches tend to focus on either of them. We will see
that works combining these two kinds of uncertainty exist, but usually require
a lot of assumptions on the effect of attributes on events. For instance [Cug+15]
considers independent event recognitions and attribute values.
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• Time uncertainty. Even if time uncertainty might be seen as a specific case of
attribute value uncertainty, consequences might be quite different. Time uncer-
tainty usually refers to imprecisions of the detection time of a LLE. In general,
it means that if an LLE is recognised at a given time t, it might, in fact, have
happened at a close, yet distinct, time t± δ. This kind of uncertainty may induce
shifts between the real sequence of activities and the order of their corresponding
events. Consequently, it may have a huge impact on recognition as in many CEP
frameworks, the order of events in data streams is an important feature. This
particular case of uncertainty is not often addressed, but some rare works exist.

2.1.2 Pattern uncertainty

Pattern uncertainty is conceptually easy to visualise, but we will see that it may some-
time refer to counter-intuitive representations closer to data uncertainty. It commonly
describes a lack of knowledge needed to describe a behaviour and, in its most common
approach, the idea is to embed probabilities into the CEP representation. For instance,
many methods represent uncertain CEs as probabilistic automata, which would intu-
itively mean that changing from a state to another is dependent not just on conditions,
but on random variables too. In another point of view, it might be understood as
a representation of a lack of knowledge for the behaviour design of the CE. The in-
terest in this is straightforward as, in many situations, it may be possible to know
that a complex behaviour has emerged, but not necessary which sequence or pattern
of activities actually lead to it. Probabilities on the pattern describes a sort of confi-
dence on the scheme the complex behaviours follow. For this reason, many works that
focus on pattern uncertainty proposed methods to learn automatically the transition
probabilities.

Unfortunately, many approaches tend to confuse data and pattern uncertainty of-
ten trying to embed data uncertainty into a probabilistic model of CE. This seems quite
counter-intuitive, since there is no reason for the CE representation to be an efficient
model to capture data uncertainty and a potential probabilistic dependence between
events or time. As a matter of example (Figure 2.1), suppose we want to recognise a
CE that is a sequence of a LLE a followed by a LLE b, written ab. This CE is known
to be approximate and many works would usually try to learn its probability1. For

1It could induce complex computation of dependencies with conditional probability defined between
events inside the CE, but, at the end of inference, the goal is almost always to estimate the marginal
probability of the CE. Consequently, in our example, we focus on the marginal probability, since its
sufficient to show that a CE structure is not completely relevant to capture pattern uncertainty.
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Figure 2.1: Example of conditional dependencies between LLEs on a
data stream. The star node represents a state where b will not appear.

this example, we suppose there exists a pattern matching perfectly the behaviour of
interest and modeled by the sequence adb. Statistically, we will suppose that after a
LLE a it may only appears a LLE c or a LLE d with respectively 75% and 25% chance
(cf. Figure 2.1). And furthermore, a LLE b has 25% to appear in the future of a LLE
c and 75% after a LLE d. Without the true pattern, we should suppose that the CE
ab has 50% chance to be valid when recognised in a data stream because contextual
information is not considered. We can see in this case that the CE probability, that
should express the lack of knowledge in the pattern design, is in fact a problem of
data uncertainty where contextual information around the CE is ignored. It would be
possible to argue that the purpose of using uncertainty on CE ab is exactly capturing
this lack of context, but events c and d are known and are, nonetheless, assumed to
produce no effect on the CE recognition. This pattern uncertainty would certainly be
more consistent as a structural uncertainty problem, but few works approach it that
way. This confusion tends to appear regularly, especially on works from the visual data
analysis community. This is probably due to the fact that, in this field, data-streams
and patterns are quite fuzzy or difficult to define. Nonetheless, there are works trying
to combine pattern and data uncertainty with independence assumption [Cug+15] or
without it [MM07].

Temporal impact on pattern uncertainty may be addressed differently. Some works
where event order is not a major concern (like in [CM12; Cug+15]) ignores completely
the impact of time for the CE probability estimation, which means that probability
is calculated independently of the number of events in the stream and time between
events. On the other side, works that integrate time in their representation often de-
scribe it as conditional dependencies between two successive LLEs in the CE definition,
which may ignore the impact of time between two events2.

2One exception is the work of Molinaro et al. that introduce a notion of decay, but this decay is a fixed
value which seems hard to estimate.
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2.1.3 Understanding of goals and concepts of Complex Event Processing
under uncertainty

In section 1.1, we provided an overview of the main goal of CEP and its core concepts.
It seems necessary to address the fact that these points of interest can not have the
same exact meaning when considering uncertainty.

For instance, it is not always possible to provide separately CEP and uncertainty
formalisms since they might, quite potentially, be interconnected and each method
will have to consider which uncertainty representations3 are best suited for each prob-
lem. Furthermore, similar questions arise about methods to extract CEs from a data
stream: do they provide recognition with probability higher than a confidence thresh-
old? Do they provide all the possible recognitions, even with low confidence? Do they
summarise recognition confidence under one probability? There is no single answer to
these questions and approaches may consider one representation or another regarding
what they aim at expressing.

These differences between common CEP and CEP under uncertainty impact the
usual sub-goals (presented in Section 1.1). We review them one more time, but now
considering uncertainty:

Expressiveness It immediately appears that expressiveness would now refer to how
uncertainty may be represented in the model and more precisely which kind of
dependency may be defined. For example, data and pattern uncertainties lead
obviously to different degree of expressiveness.

Incidentally, it is necessary to look over the type of inference that should be
performed since approaches may focus on different inference goals. For instance,
most works tend to compute marginal probability of a given CE x(t) regarding
a set E of observed LLEs:

P(x(t)|E) (2.1)

where t might be as well at time point or a time interval for the recognition of x.
Other research, in contrast, focuses on maximum a posteriori (MAP) inference
and, in general, on a sequence of states θ maximising the probability of the CE.

arg max
θ

P(θ|x(t), E) (2.2)

3cf. Sections 2.1.1 and 2.1.2.
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Furthermore, some approaches may find interest in considering hard constraint
rules as observations. These rules might describe different pieces of information,
like mandatory relations between events in the system or a CE considered as
prior knowledge. Obviously, this type of possibility is highly correlated with
the uncertainty representation used. For instance, MLN approaches may easily
represent these constraints while automata methods are not well-suited for this
kind of computation.

Efficiency Even if the number of events analysed per second remains an important
characteristic to measure efficiency, it might not be the only criterion anymore.
As approaches have to produce some sort of confidence value, it is necessary to
measure the efficiency of methods. Most works would evaluate this efficiency
applying their approaches on known datasets and comparing them using an F-
measure score. Furthermore, various approaches may use techniques that use
approximate or exact inference, which intuitively cannot provide the same accu-
racy. For instance, [Ska+15b] or [MD11] look for all possible worlds regarding a
given data stream, which provides exact inference according to the model, whilst
[Ska+11] uses an MLN approach, based on the classical MC-SAT algorithm, that
does not ensure exact estimation according to the model.

It is also noteworthy that some methods ignore potential contextual information
(especially when evaluating pattern uncertainty), therefore computing the con-
fidence on CE recognitions might be fuzzy due to a lack of expressiveness or
excessive independence assumptions.

Multiplicity Multiplicity, which consists in recognising and memorising all possible
recognitions, raises difficult questions. For instance, should recognitions with a
low probability be counted as interesting or stored for future use? Memorising
everything might be intractable, but putting a threshold may miss necessary
analysis information for more advanced CEs.

Furthermore, considering, in a uncertain data stream, a method that tries to esti-
mate the probability of a CE, which is designed using two consecutive interme-
diate CE, it may be possible to estimate probabilities of each one independently,
but nothing ensures that it is possible to multiply their two probabilities since
the sub-CEs may not be independent. Without uncertainty, multiplicity mainly
consists in memorising all identified patterns. With uncertainty, it is necessary to
understand possible dependencies to be sure that the computation just “makes
sense” and to consider all possible versions of a stream.
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For pattern uncertainty, multiplicity is likely to be less problematic, as the data
stream is supposed safe, which avoids combinatory explosions or at least keeps
it under some control.

Historisation Historisation faces issues similar to those for multiplicity, since it im-
plies storing all possible LLEs with all associate probabilities leading to a recog-
nition.

Time representation Time representation may have a huge impact on the uncertainty
representation. Indeed, time may be underlying relations or dependencies that
should be considered when analysing a data stream during the recognition pro-
cess. Uncertainty regarding these time-dependent relationships might be repre-
sented in many ways. It is possible to suppose marginal probabilities indepen-
dent of time or probability dependencies using specific probability distribution.
For instance, some works ([Mol+14]) use automaton to recognise a pattern, but
probability computation is modified regarding a delay function defined between
two states of the automaton.

2.2 Markov Logic Approaches

MLNs introduced by Richardson and Domingos [RD06] are usually presented as Prob-
abilistic Graphical Models (PGMs), but are in fact closer to a framework based on logic
to construct Markov random fields. Briefly, MLNs are defined using a set of logical
clauses and a weights associated to each clause that represents the confidence on the
formula to be asserted: the higher the weight, the higher the confidence. Some for-
mulae are hard constraints, meaning that they cannot be broken, and are defined as
formulae with infinite weights.

As MLNs associate the expressiveness of FOL with a probabilistic model, they have
been attracting increasing intention for the last ten years among the CEP community,
where an important research area focuses on trying to add uncertainty to their models.
We present MLNs in further detail in Section 3.1 and we now focus on the existing
CEP approaches using MLN.

2.2.1 Event calculus using Markov Logic Networks

Skarlatidis et al. [Ska+11] proposed an adaptation of Event Calculus using MLN to
soften detection, when pattern detection of HLEs is not certainly defined. The authors
try to detect activities from the dataset of the CAVIAR project.
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The CAVIAR project is a dataset of surveillance videos annotated with the activities
of people or objects that appear on it. This information is just made of activity tags:
active, inactive, walking, and running, with an ID identifying the person or object. These
tags may be seen as LLEs. More complex activities are annotated and correspond to
interactions like meeting, moving, fighting, and droping an object.

The goal of the authors is to deduce these behaviours using LLEs, but as the pattern
to recognise a CE is not well defined, the idea is to use MLNs to let recognition be more
tolerant by softening associated logical formulae. The authors used a reduce version
of Event Calculus named Deterministic Event Calculus which uses less predicates to
define the rules of the system than in the initial version of Event Calculus (happens,
holdsAt, initiates, and terminates) and where time is considered as discrete.

MLNs do not use the close world assumption so circumscription has to be instan-
tiated. Briefly, circumscription consists in eliminating predicates that are not entailed
by the formulae. For instance, given a set of variables x, y, z ∈ V and a set of formulae
F = {a(x, y) ∧ b(y, z) =⇒ c(x, z)}, if c(x, z) is true, circumscription ensures that it
exists a b(y, z) and a(x, y) that are true too. Without circumscription, this is not guar-
anteed. Consequently, rules for deducing HLEs should be written with the inverse of
every formula. For instance, the inverse of F is F′ = {∃y c(x, z) =⇒ a(x, y) ∧ b(y, z)}.
Unfortunately, with MLNs, existential quantifiers applied on the right side of a clause
force the model to create a number of clauses relative to the size of the set V and the
number of variables under the existential quantifier, which may impact the inference
performances. For instance, if V = {1, 2, 3}, formula F′ would be rewritten:

F′ =



c(x, z) =⇒ a(x, 1) ∨ a(x, 2) ∨ a(x, 3)

c(x, z) =⇒ a(x, 1) ∨ a(x, 2) ∨ b(3, z)

c(x, z) =⇒ a(x, 1) ∨ b(2, z) ∨ a(x, 3)

c(x, z) =⇒ a(x, 1) ∨ b(2, z) ∨ b(3, z)
...

c(x, z) =⇒ b(1, z) ∨ b(2, z) ∨ b(3, z)

(2.3)

In this case, the existential quantifier makes the number of clauses to grow with a
factor 2|V|. This will be discussed in detail in chapter 4. To avoid this problem, the
authors rewrite formulae to be domain-dependant to reduce the number of parameters
per formula. For instance, Formula 2.4 which describes the conditions to initiate the
fluent meet with a non-domain-dependent formulation, is rewritten into formula 2.5
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to constraint the initiatedAt predicate to the fluent meet in the clause head to avoid the
F variable and use directly meet(ID1, ID2), which is more restrictive.

initiatedAt(F, T)↔
∃ID1, ID2 (F = meet(ID1, ID2)∧
happens(active(ID1), T)∧
¬happens(running(ID2), T)∧
close(ID1, ID2, 25, T))

(2.4)

initiatedAt(meet(ID1, ID2), T)↔
happens(active(ID1), T)∧
¬happens(running(ID2), T)∧
close(ID1, ID2, 25, T))

(2.5)

The authors study the impact on performance of formulae that may not be bro-
ken (hard constrained) and formulae that may be broken (soft constrained) to evaluate
how prior knowledge may influence inference. Two sets of formulae are defined: one
describes complex activities (LLEs imply HLEs) and the other describes the circum-
scription. The authors choose to soften one either at a time or both and compare the
results to a fully logical model named EC-Crisp on a noisy data stream. This work
might be considered as one of the few that analyse the performance of pattern uncer-
tainty approaches when embedded into a CEP representation.

Further work from these authors [Ska+15b] provides more results on this case
study where the formulae are separated into two new sets: one representing the recog-
nition of a fluent and the other representing the inertia of this fluent along time. Inter-
estingly, softening the second set will be equivalent as putting a decay on the recogni-
tion: after a certain amount of time, and without detection of LLE, every fluent tends
to be uncertain with a 50-50 chance. By applying this on the dataset modified with
different levels of noise, they show that it is possible this way to tweak the impact of
data uncertainty by making the model to be more tolerant about false observations.

However, these two approaches still have a lot of limitations, principally due to
MLN behaviour. Defining the weight for the formulae is a difficult task as the con-
fidence associated to a weight is relatively dependent of all the others weight of the
problem [DL09; Jai11; Ska+15b]. It is still possible to learn the weights with supervised
learning, but this technique might be difficult to set up on specific cases, especially
when knowledge comes principally from specialists and might cause performance
issues. Furthermore, the model presented is quite simple as it just us one level of
deduction between LLEs and HLEs and seems to be domain-dependent for every case,
but dimensionality of the problem might not always be reduced so easily.
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2.2.2 Interval approaches

Interval-based approaches with MLNs applied on CEP do not usually come from the
CEP community but from the video analysis domain. Data analysed by this research
community is generally noisy and research aims at improving the reliability of be-
haviour recognition. This noise on data is usually produced by the inherent blurriness
of image support and compression, but it might also come from preprocessing tech-
niques used to extract objects or persons from images. Indeed, these techniques are
not fully reliable and may produce inconsistent data. Consequently, MLNs are used
to represent this uncertainty and reduce the impact of errors from preprocessed LLEs
by considering underlying activity dependencies along time. These dependencies are
represented in many works by combining events together with Allen’s interval algebra
[All83].

Morariu and Davis [MD11] aim at detecting activities in a video of basketball match.
Their logical model is constructed from observations, which consist of events or proper-
ties. Basically, observations are evidences on the system, e.g. obs_in_air(i) meaning
the ball has been detected in the air on the video during the instant of time i. Proper-
ties are states of the game that may represent rules of basketball, e.g. can_dribble(i)
indicating whether a player is allowed to dribble or not according to the rules. Events
are complex actions that are induced by the observations and should verify the prop-
erties (i.e. the rules). Allen’s algebra is used to define relations between events or
property; however the sequence operator is not used in the model4 to avoid long-term
temporal relations, thus reducing drastically the size of the Markov network. Fur-
thermore, the authors do not use classical MC-SAT algorithm5 [PD06] on MLN for
inference but a branch-and-bound algorithm [MD09]. MLNs are just used to construct
the ground Markov network. The main difference between these two algorithms is that
MC-SAT computes approximate marginals while the branch-and-bound algorithm pro-
duces exact inference. This algorithm is, in fact, closer to other techniques for dealing
with uncertainty like d-DNNF [Dar01; Dar04] or Sentential Decision Diagram (SDD)
[Dar11] used in ProbLog [RKT07; Dri+15]. It provides fast and strong results on small-
dimensional problems, but higher-dimensional problems may face a computational
bottleneck. For instance, with long-term temporal relations it would be reasonable to
think that the inference time would have taken an exponential factor on computation.

4In the article, the sequence operator is referred as after or before operators
5cf. Section 3.1
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Top Level Mid Level Low Level

Make Tea

FillKettle

GraspKettle, CarryKettle, TurnonFaucet,
FillWater, TurnoffFaucet, CarryKettle,
ReleaseKettle

GetIngredients
GoToCupboard, GetCupFromCupboard,
GetTeaboxFromCupboard

PrepareTeabag
GraspTeabox, OpenTeabox, PutBagIn-
toCup

BoilWater TurnOnKettle, TurnOffKettle

PourHotWater GraspKettle, PourWaterIntoCup, Re-
leaseKettle

Table 2.1: Hierarchy of event from [Son+13].

The model proposes certainly more complex relationship between observations, activ-
ities and behaviours compared to [Ska+11], but, still, most of the rules of the model
are just composed of two levels of deductions from observations to behaviours.

Song et al. [Son+13] proposed a method to help task recognitions and tracking of
these tasks using MLN with different sources of information: one from visual data and
another from language. They specifically focused on the impact of a hierarchical repre-
sentation of events to recognised complex tasks or helping to fill the gap of undetected
or erroneous LLEs. This hierarchy is composed of three levels of events where each
event from a level may be combined with temporal constraints defined with Allen’s
algebra. An example of this hierarchical structure for the activity MakeTea is provided
in Table 2.1. While visual data might only detect LLEs, the language source, which is
the subject’s utterances, might detect mid-level or high-level events making possible
to confirm, discover or invalidate LLEs regarding the results of the visual data. Still,
the problem dimension remains quite small with approximately 100 LLEs and three
levels of deduction.

Recent works from Gayathri, Easwarakumar, and Elias [GEE17] provide an appli-
cation for activity recognition in smart homes. One major difference from previous
works is that the input LLEs for MLN are not temporal data points but temporal in-
tervals. A preprocessing phase identifies time intervals of interest, which will be the
input LLEs. Due to this fixed interval segmentation, it is possible to construct relations
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between events using Allen’s algebra, but they will be represented as hard constraints
and may be, in fact, preprocessed. Furthermore, rules or structure of the model are
not provided so it is quite difficult to estimate the complexity of the problem solved
with the MLN.

Snidaro, Visentini, and Bryan [SVB15] proposed to use MLNs and Allen’s algebra to
fuse data with different level of confidence and applied on maritime awareness. They
identified complex activities like a vessel docking or two vessels meeting in the sea.
Time is not represented directly in the model so time properties are described more
conceptually. For instance, the predicate overlaps(V1,V2) indicate that the period of
time where the vessels V1, V2 appeared in sensors overlapped, but no precise time-
point is provided. Similarly, space relations are defined without precise position but
using a predicate proximity(Vx,Vy). Even if experimentations show good estimations
of CE, the model remains quite small with only three levels of deductions and only
five vessels involved. Therefore, it is not possible to say if the approach could support
a larger model.

2.2.3 Ad-hoc approaches

Numerous approaches exist that use neither standard previous works on CEP nor
Allen’s algebra, but remain related to complex events recognition.

Sadilek [SK10; SK12; Sad12] applies MLN on a capture-the-flag game with the pur-
pose of recognising behaviours of the players and actions between them by using
only the GPS positions of each player and the rules of the game. GPS sensors have
a precision of a few meters around a player, meaning their true position is uncertain.
Furthermore, data from GPS are collected only every second, which means that a short
action from a player might easily be missed. Time has an impact on the system but
every action is assumed to be only dependant from the previous instant in time. This
construction is similar to a Hidden Markov Model (HMM) or a dynamic Bayesian net-
work (DBN). The full model is only made with three levels of deduction but with a
local temporal dependency from previous instant. One specificity of this work is that
it uses learning to discover new activities related to the ones already described. For
instance, the authors describe the capture action that consist of capturing an adversary
by touching them during the game. The rule for capturing is soft-constrained and is
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described as follows:

∀a1, a2, t : enemies(a1, a2) ∧ onHomeTer(a1, t)
∧ onEnemyTer(a2, t) ∧ isFree(a2, t)
∧ samePlace(a1, a2, t) =⇒ capturing(a1, a2, t)

(2.6)

meaning that if two adversaries are close enough, the player who is not on his territory
is captured. As the rule is softened, it is not necessarily true, and an action of captur-
ing might succeed, fail, or not happen6. So the authors want to learn new formulae
describing each scenario. To do so, they use a structure learning method to construct
automatically the CE representing failed captures using sets of failed and succeeded
attempts. These news rules are supposed to be soft-constrained and weights may be
learned through MLN techniques. This is one of the rare works that are interested in
structural learning for CEP under uncertainty.

Wu and Aghajan [WA10; WA11] do not propose to recognise actions, but objects in
rooms, regarding the behaviour of the persons in the room. This is not CEP stricto
sensu, but it is closely related as it may be seen as a reversed process from activities to
clues. For instance, if a person is sitting, it may imply that there is at least one chair
or sofa. Furthermore, close objects influence classification of an object: if a TV is close
from another object, this one might more likely be a chair than a microwave. These
kinds of rule induce a sort of loopy relationship between objects, but no time relations
exist in this model.

Most of the other applications based on MLNs remain quite similar to the presented
works. MLNs are mainly used to fuse data from multiple sources [BTF07], to reduce
uncertainty, or to define a model that does not capture completely correctly the rela-
tionships between LLEs [HNS11; HNS10; LDL17; TD08].

2.2.4 Summary on Markov Logic Networks approaches

In this part, we want to summarise which aspects of MLNs might be beneficial or not
in order to deal with uncertainty in CEP. In addition, we want to discuss some aspects
that were only partially, if at all covered by the literature.

6This would mean that the rule used is not sufficiently precise. Which is obviously the case for the
equation 2.6.
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It appears obvious that the main interest of MLNs comes from their syntax inherited
from FOL providing an easy way to model an existing CEP representation. Even
without prior knowledge of the CEP domain, other approaches, ad-hoc or interval-
based, might make good uses of MLNs, since recognising an activity may generally be
described using FOL as a set of clauses.

Furthermore, as MLNs are in fact a procedure to construct a random Markov field,
they come with all the techniques existing in the field and, more specifically, tech-
niques associated to weight learning. Modelling a system subject to uncertainty might
be sometimes difficult as it may be hard to quantify this uncertainty, even with experts.
Consequently, having techniques that learn the weights of the model is really useful
in these situations.

In return, it appears from the literature that the expensive calculation time needed
to perform inference leads to minimizing the size of the model. Consequently, existing
models from CEP may not be translated into MLNs straightforwardly, as it might first
seem.

Another negative point is the weight representation, which is often considered
as confusing since it does not match trivially relative probabilistic confidence of the
associated clauses.

Finally, we want to address some points that are almost never presented despite the
interest they should have for the CEP community.

Performance in the different articles mainly considers precision, recall, or F-measure,
when inference time is almost never discussed (Except for [MD11; TD08]), whereas it
should be of interest in domains related to uncertainty in CEP. For instance, an impor-
tant part of the literature is from the video analysis domain which is usually interested
in online analysis, which requires computation to be performed in a matter of seconds
at its longest. This lack of information on inference time is even harder to understand
as many of these publications raise the issue of exponential growth in computation
times for models like MLN, but usually almost no detail is provided about their com-
putation time.

Correlated to computation time, scalability to more complex models is never dis-
cussed either. This might be explained by the number of studies focusing on a specific
application rather than on solutions to make these methods robust on higher dimen-
sions. Even works based on existing CEP methods, like [Ska+15b] do not discuss
scalability, although this property may be highly correlated to the number of events
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considered (the length of the data stream) or the complexity of the HLEs which is
correlated to the number of rules used.

2.3 Bayesian network approaches

In this section, we discuss existing works focusing on Bayesian structures to capture
or represent uncertainty in CEP.

Wasserkrug et al. [WGE05; Was+08; Was+12] describes a framework divided into
two main parts: a selection part that filters the data flow according to a set of rules
describing the CE and a Bayesian network computing the uncertainty. Formally, the
language used to represent these rules does not matter, as long as it can be used to filter
the data stream. In the data structure, LLEs are represented as tuples representing the
attribute values for each LLE. LLEs might be certain or not. If an LLE is certain, it
is represented by only one tuple, otherwise it is represented by a various number of
tuples, where each tuple is a possible outcome for this LLE. Each of these alternative
tuples is associated with a marginal probability. The probability sum of all element
in a tuple should be smaller than or equal to one. If the sum is smaller than one, its
complementary to one represents the probability that the event does not occur at all.
Computation of uncertainty is performed separately from the selection by a Bayesian
network, where probabilistic relations are automatically learned regarding the events
selected and constructed at the previous step.

Performances are highly correlated to the selection process as the method looks for
all possible outcomes that the rules entail, called worlds. The processing time would
be linearly dependent on the number of worlds and the number of world might be ex-
ponentially dependent on the number of events (and attributes) and the rules. To avoid
this problem, the authors proposed a sampling method that can be performed given a
Bayesian network previously defined, allowing the method to bypass its construction.

Another approach using Bayesian networks was provided by Cugola and Margara
[Cug+15]. Their work is based on a specific language designed for CEP: TESLA
[CM10]. They extend it to a new model able to deal with uncertainty: CEP2U. CEP2U
is supposed to deal with the two kinds of uncertainty that we previously mentioned:
data and pattern uncertainty. More specifically, CEP2U deals principally with at-
tributes of events, which is not so common without considering finite and discrete
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sets of attribute. Consequently, the specific order of events in time is less important in
this model.

The semantics of this model looks like a SQL language for rule definitions and is
directly inherited from the TESLA model. For instance, consider the following rule:

define TVS_Malfun()
from Oxygen(km=$a) and
last Temp($a-10 < km < $a+10 and value>30)
within 5 min from Oxygen

which represents a malfunctioning of a Tunnel Ventilation System (TVS) that induces
decreasing concentration of oxygen and higher temperatures. Oxygen and Temp are
two LLEs detected by sensors. The Oxygen event-type detects an abnormally low
concentration of oxygen around a specific place in the tunnel given by the attribute
km. The Temp event-type measures the temperature and stores it in the attribute value
at a specific position in the tunnel provided by the attribute km. The TVS_Malfun is
event-type recognised when the last detection of the temperature indicates that it was
higher than 30 degrees and a low level of oxygen was detected closely, with these two
events appearing together in a five-minute window of time.

Uncertainty on events is represented using a marginal probability, while attribute
uncertainty is represented with a specific probability distribution. For instance

Temp@10 %0.9 (km=<16.2, U(-1, 1)>, value=<24.5, N(0,1)>)

describes the LLE associated to a temperature measurement where Temp@10 represents
the type of LLE followed by its ID and %0.9 the probability of confidence on this
event. The event is associated with two attributes km and value. Attributes might
have a certain degree of erroneousness, so each attribute is provided with the actual
measurement (24.5 for the temperature) and a probability distribution quantifying the
possible variations around the measurement (standard normal distribution around
24.5 for the temperature).

Probabilities are then computed for every case in the rule implying an uncertainty
value from an attribute. Each constraint is supposed independent and the probabilities
are then multiplied to compute the overall probability. For instance, for the previously
defined rule:

PMal f un = Pdetect · P(−10 < XTemp.km − XOxygen.km < 10) · P(Xtemp.value > 30) (2.7)

where Pdetect is the probability of correct detection, which is here 0.9.
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Rule uncertainty is computed separately using a Bayesian network which serves to
extend the relations between LLEs and the composite CE to include external factors
that might influence the observations. For instance, a TVS malfunction induces a
rising temperature and a lower oxygen concentration. But these two parameters might
be induced by a traffic jam which may impact the probabilities of a TVS malfunction.

The structure of the Bayesian network is automatically extracted from the rules and,
without tuning, does not modify the probability distribution from the initial model. To
influence them, it has to be tuned by domain experts.

At the end, the model will produce two probabilities: one from the events and one
from the rules. By design, authors assume that these probabilities are independent and
may be merged by multiplication as they represent uncertainty from distinct elements.
But concretely, it seems quite difficult to tell where the limit is between rules and
events uncertainty, especially since probabilities from the events are computed using
conditional properties such as temp.value > 30. Consequently, asserting that these
probabilities are independent seems to be a rather strong assumption.

An interesting use of Bayesian networks is proposed in [MM07] by Muncaster and
Ma. The authors defined a specific structure of DBN called hierarchical DBNs, which
define relations between HLE and LLE. Figure 2.2 presents the representation of the
model. X(d)

t variables represent the states of the system, where t is the time and d the
complexity level. Consequently, XHL

t might be seen as CEs and XLL
t as LLEs. XPH

t

represent phases, which might be seen as sub-events that should be triggered before an
LLE and defined using a Coxian phase-distribution regarding XLL

t . Formally, the LLE
might pass through a number of phases nPH and terminates when it reaches the final
phase. Probability distribution is defined as follows:

Pr(EPH
t = 1|XPH

t = i) =

1 i = nPH

0 otherwise
(2.8)

Pr(XPH
t = j|XPH

t−1 = i, XLL
t = k) =



1− pPH,k
i→i+1 j = i, i < nPH

pPH,k
i→i+1 j = i + 1, i < nPH

πPH,k
j i = nPH

0 otherwise

(2.9)

where, in context k, pPH,k
i→i+1 is a free parameter representing the probability of advanc-

ing to the next phase from phase i and πPH,k
j is the probability of starting the sequence
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Figure 2.2: Model HDBN from [MM07]

in phase j.
XPH

t may be seen as lower level events that might not be directly observed. Fur-
thermore, XPH

t may be seen as a representation of sequential time constraints as they
might represent successive steps to assert before a change of state from a XLL

t may be
triggered. E(d)

t are binary variables representing activation constraints from bottom to
top of the levels of states, which may be seen as rules for deducting HLEs, as these
variables embed the constraints allowing a CE to be triggered according to the state of
lower events. Finally, the YLL

t variables are vectors representing observations from the
video, assumed to be drawn from a Gaussian process.

This method proposes an interesting way to deal with uncertainty, especially since
the observable variables are not directly the lowest “events” on the system and may
represent sequential constraints that are needed to trigger the observed LLEs. A sim-
ilar approach exists in [MHZ10; Man09] using relational DBNs. This method is quite
similar to the work of Muncaster and Ma, but dependencies between different levels
of events are not just linear but defined as a tree structure where the inner nodes
correspond to FOL expressions. This provides a broad expressiveness to the model.

Wang and Ji propose an approach for video analysis that uses DBN to introduce
contextual information to help recognising events [WJ12; WJ14]. It is not stricto sensu
CEP, but it possible to see some correspondences. Indeed, some of the contextual



60 Chapter 2. Complex Event Processing under uncertainty

information used is the surrounding objects that are detected on a frame at a specific
moment and might interact with agents on the frame. Furthermore, events from the
previous frame influence the present recognition of events. These dependencies are
learned with supervised MAP.

The main difference with CEP is that, even if these events might be seen as complex
in a sense that the concept is not completely clear for a computer like “getting into a
vehicle”, they are not a composition of sub-events, but are rather directly provided by
usual techniques from video analysis. In a way, this approach is similar to the work
of Biswas, Thrun, and Fujimura [BTF07] using MLNs to combine multiple sources of
information.

The work from Wang, Gao, and Chen [WGC17] differs a bit from other approaches,
since the authors do not aim at dealing with uncertainty but at anticipating a potential
future behaviour. In their approach (cf. Figure 2.3), different event sources emit LLEs
on potentially multiple data streams. These streams are parsed using Basic Event
Processing Agents (BEPA) that recognise CE occurrences. BEPA are linked to Event
Channels (EC) that might be used by other BEPAs. Finally, all the information of
interest is sent to the Probabilistic Event Processing Agent (PEPA). The skeleton is,
basically, a database of statistical dependences between recognitions. From then, the
idea is to infer the probability of each CE type of interest from a Bayesian network. This
Bayesian network, both parameters and structure, is learned and evolves according to
data provided continuously.

Even if the Bayesian network structure is learned using a reduced greedy search ap-
proach which may impact the probability estimation accuracy, it is a really interesting
approach since it does not depend of the CEP representation used and is constantly
learning from data streams to identify correlation from preprocessed stream using
BEPA.

2.4 Automaton-based methods

We present in this section different methods that rely on automaton structures to rep-
resent and reason under uncertainty. Most of these approaches are either extensions
of the SASE+ model presented in section 1.2.2 or the works of Albanese et al.



2.4. Automaton-based methods 61

Figure 2.3: Architecture system proposed in [WGC17]

2.4.1 SASE Approaches

Shen, Kawashima, and Kitagawa [SKK08] propose to use the SASE model, and more
specifically the NFA structure to compute recognition uncertainty. The authors sup-
pose that LLEs are provided on a discrete time stream as a set of alternatives at each
instant. Each alternative has its own probability and is independent to each other.

Using the query in its NFA form and the stream, they compute an Active Instance
Graph (AIG) that records the set of actives states. The AIG is an acyclic directed graph
that represents all possible combinations between all potential events. An example
of these different representations is provided in Figure 2.4. The NFA represents a
sequence of LLEs with a Kleene closure on the B-type event. Formally, it would be
described as the clause SEQ(A a, B+ b[], C c) with the SASE syntax. Incoming LLEs
are provided through the probabilistic event stream producing the AIG. As may be
seen, the alternate event b1,12 does not appear on the AIG as it does not match with
the recognition process represented by the NFA, which should start with an A-type
event. When the full AIG is constructed, each termination state and its anterior states
are potential recognitions of the CE. More precisely, a path from 0-state to a termina-
tion state is exactly one potential recognition. Computation of the CE probability is
performed as follows: each node in the graph is associated with its marginal proba-
bility, the probability of a path from a termination node to a 0-node is the product
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Figure 2.4: NFA to AIG [SKK08]

of the nodes along the path, and the probability of the CE is the sum of all paths.
This is the main idea for the computation, but the tree structure avoids an expensive
calculation of all paths. For instance, on the b3,31 node, if the probability of streams
(a1,11, b2,22) and (a2,21) is computed, the cumulative probability of all the streams on
the b3,31 node is the product of its marginal probability by the sum of the probabilities
of each stream. Formally, computation might be performed linearly on the number of
nodes and with more subtle optimisation might be performed using constraints vali-
dation or threshold to reduce the AIG size. Threshold optimisation has been used by
Kawashima, Kitagawa, and Li in [KKL10] and filter optimisation and variation of the
AIG structure have been used by Chuanfei et al. in [Chu+10].

Even if this model is really interesting, mainly for its speed [SKK08], it assumes
two strong hypotheses of independence between events. The first hypothesis is the
independence assumption between alternatives at a given time, which supposes con-
sequently that two events can not be produced simultaneously. The second hypothesis
is the independence assumption between events from an instant to another that may
be unrealistic for many applications that need to represent this time dependency.

Still based on the SASE model, Zhang, Diao, and Immerman [ZDI10] proposed an
approach to deal with imprecise timestamps. Concretely, LLEs are certain, but the
given time is not, meaning the real time of the corresponding activity is somewhere
within a specific interval around the observed time. As time is supposed to be dis-
crete, each possible instant for a LLE has its probability defined by a probability mass
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function, which is uniform by default. The authors’ goal is to provide a probability
confidence on each match signature of a query. A match signature is defined as the
unique sequence of LLE in a match. It simply means that a CE may be recognised on
many different timestamps, but composed with the same sequence of LLEs at differ-
ent instants. So the authors want to compute the confidence in the recognition of each
match signature, and not all recognitions.

Two frameworks are proposed for the computation of CE confidences. The first
framework is point-based: it considers each possible time point for an LLE indepen-
dently and try to reconstruct the recognition pattern based on these points. This
method is costly when the number of time points to consider is high. Formally, if
LLEs are detected at time t and the uncertainty interval for these events is [t− δ, t + δ],
in the worst case complexity is O(δl) with l the pattern length. The second frame-
work is an event-based approach that looks for possible lower and upper bounds for
each LLE associated to a match signature. These bounds allow the computation to
prune efficiently the solution and seems more scalable on variations on the size δ of
the uncertainty interval.

Unfortunately, this approach still has some drawbacks since it does not seem highly
scalable on the pattern length. Authors experimentations showed the approach to be
intractable for pattern length above 6, especially for the event selection strategy skip till
any match. Furthermore, it is impossible with this method to use negation or Kleene
closure. The Kleene closure for imprecise timestamps has been addressed in more
recent works [ZDI14], but the computation cost might be easily exponential and does
not seem tractable. Nonetheless, Zhang, Diao, and Immerman proposed an approach
to the problem of imprecise timestamps, which is a subject that is rarely addressed
along the other works.

Wang, Cao, and Zhang [WCZ13] extend the approach proposed in [SKK08]. First of
all, the authors provide new operators to construct the CE pattern like ANY, ¬, AND,
FIRST, and LAST. The authors allow execution of parallel streams. The model supports
the hierarchical definition of CEs and parallel computation. Finally, the framework re-
moves the independence assumption between events in time and assumes that events
may follow the Markov property. The probability between LLEs between two instants
is provided by a conditional probability table. This method solves many problems that
were present in the work from Shen, Kawashima, and Kitagawa and still performs fast
computation (thousand of events per second). Unfortunately, results may be difficult
to interpret. Experimentation are set using a meta parameter λ that measures the rate
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of events appearing in the pattern. Formally, for a given event in the set of primi-
tive events e ∈ E, λe = count(e)

∑e′∈E count(e′) , where count(e) counts the apparition of e in the
stream. The parameter λ is calculated as the sum of λe∗ where e∗ is an event appear-
ing in a recognition. This parameter has a huge impact on scalability since the method
seems intractable above λ > 0.25. But, it seems difficult to estimate the values that
this parameter might take in a real application. Furthermore, if the robustness to large
window size is demonstrated, no experimentation is performed on the impact of the
pattern length, whereas it was shown to have a big impact in [SKK08]. Nonetheless, it
is a promising approach with apparently great performance, which suppresses part of
the independence assumptions by using the Markov property.

2.4.2 Automaton-based representations from Albanese et al. and its exten-
sions

In 2007, Albanese et al. proposed an approach based on probabilistic automata [Alb+07].
In this model, LLEs are not uncertain and CEs are represented by an automaton with
probabilistic transitions. Even if it may be seen like a Markov chain, in fact, in these au-
tomata, time is not formally represented and an automaton just represents all possible
chains of processes allowed for explaining a CE. Consequently, probabilities represent
chances of going from a state to another, not at each instant, but in general. For in-
stance, the authors describe a CE for a regular operation on an ATM: after inserting the
card, two states are possible: withdrawing cash or inserting checks. The first option has
a 0.7 probability and the second a 0.3 probability. Time elapsed between the moment
the card is inserted and one of the two options does not matter and may be as well
seconds or minutes.

This model was later extended in [Alb+11] and time representation were added.
Formally, a transition between two states takes a specific duration. This duration is
supposed to be always identical and does not have any influence except to restrict
durations of CEs. The main goal of the paper is not to find probabilities of the activ-
ity, which was already the objective in [Alb+07], but to identify unexplained activities.
Formally, the idea is to find activities not described by any automaton. To do so, the al-
gorithm looks for all possible executions and computes their probability regarding the
probabilistic automaton associated to the corresponding CE. Each recognition (called
occurrence) may potentially be inconsistent with another occurrence, especially if the
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same CE is detected during two overlapping periods of time7. Combinations of occur-
rences or their absence are seen as possible worlds and a probability of an occurrence
is defined as the sum of the probabilities of world containing it. A sequence which has
no explanation along the different worlds is supposed to be unexplained and extracted.
This method may perform marginal or MAP inferences, but the representation of time
is implicit and may not have constraints relative to time intervals.

In 2014, Molinaro et al. proposed PADUA8 [Mol+14]. They introduced probabilistic
penalty graphs (PPG), which extend the stochastic activity definition of [Alb+11]. These
PPGs handle noise during the recognition process using a noise degradation function
ρ. In [Alb+11], the probability of a activity was the product of the change of states
probabilities. These probabilities were represented using a δ(e) function that provides
the change of state probability on a specific edge e of the automaton describing the ac-
tivity. In [Mol+14], each edge of the automaton has an additional value ρ(e) providing
the decay in case of unexplained events. This decay is introduced in a score function
associated to the recognition:

score(L∗, I∗) = ∏
j∈[1,m−1]

δ(lij .action, lij+1 .action) · ρ(lij .action, lij+1 .action)z (2.10)

where L∗ = ⟨l1, . . . , ln⟩ a subsequence of LLEs that match a recognition, I∗ = ⟨i1, . . . , im⟩
the indices of LLEs taking part in the recognition, with m the length of the recognition
without irrelevant LLEs, and z = ij+1 − ij − 1 is the number of irrelevant LLE between
two LLEs taking part to the recognition. For instance, if an activity pattern is defined
as the PPG in figure 2.5, knowing the sub-stream L∗ = ⟨PreFirewallAccess, PostFire-
wallAccess, X, MobileAppServerAccess, X, X, PostFirewallAccess⟩ with X representing
noisy events with, consequently, I∗ = ⟨1, 2, 4, 7⟩, the score for this recognition is com-
puted as follows: score(L∗, I∗) = 1 · 0.1 · 0.21 · 0.5 · 0.92 · 0.2 = 0.00162. The authors
define furthermore an unexplained situation that represents a partial recognition of a
behaviour. In term of automata, it means that an event equivalent to a start state
occurred on a stream but a terminal node was never reached. These unexplained sit-
uations may be recognised if the length is maximal and their scores are higher than a
specified threshold τ. The authors propose, furthermore, different algorithms for fast
and distributed computation.

7The authors consider it as an impossible situation, since they suppose that only one specific type of
action might be performed at a given time by a single subject.

8Parallel Architecture to Detect Unexplained Activities
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Figure 2.5: Example PPG definition of an activity from [Mol+14]. Edges
are labelled with their δ and ρ values: (δ(e), ρ(e)).

2.4.3 Automaton-based representation from Fazzinga et al. and its exten-
sions

Some approaches that aims at dealing with uncertainty in data stream may be found
in the Process mining community. In this perspective, an interesting work from this
domain is provided by Fazzinga et al. [Faz+18b]. In this work, the authors suppose
that the data stream is produced by distinct processes. These processes might be seen
as workflows of tasks to achieve a specific objective. A simple example of that might
be the refund process of a defective object from customer service point of view. This
process follows a succession of tasks like getting information from the client. But in
this scenario, the authors suppose that the events produced do not carry sufficient
information to know which task they are associated to. For instance, in the refund
procedure, the LLE detected might be the action of sending an email, action that might
appears in other tasks like warning the managers of an issue with a customer. Figure
2.6 shows an example of relations between different tasks, processes and events. Note
that this example provide no information as of the order of tasks: an edge between a
process and a task indicates that the task may appear in the workflow9 of the related
process, and an edge between a event and a task indicates that the task may produce
an instance of the connected event types.

This problem might be seen as a pattern uncertainty problem since the correlation
between LLEs and tasks is fuzzy. In [Faz+18b], LLEs are provided with a probability
distribution function pa that provide the a-priori probability that a LLE e is generated
by a task a. Furthermore, a process is a workflow of tasks described with two sequen-
tial rules. X =⇒τ Y (resp. X =⇒τ ¬Y) describes that an instance (resp. no instance)
of task Y should appear in an interval of time τ after each instance of task X. In this

9The workflow is not represented here but it is consider during the inference.
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Figure 2.6: An example of relationship between processes, tasks, and
events. ([Faz+18a])
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Figure 2.7: A CAS-graph example for a data stream φ = αβξξ.
([Faz+18a])

system, only LLEs may be observed, while tasks and processes might not. It is possible
to consider that tasks and processes are equivalent to some CEs, but where only the
relation between tasks and LLEs is imprecise.

When the program receives a data stream φ = αβξξ, it tries to deduce the prob-
ability that processes ended or the most likely explanation for the data stream. In
[Faz+18b], calculation is performed using a MCMC approach that generates valid in-
terpretations of the data stream using the probability distribution functions from the
LLEs and asserting, at the same time, order constraints enforced by the processes. In
[Faz+18a], authors proposed an approach similar to that of [SKK08] and [Alb+07] by
constructing a conditioned activity sequence graph (CAS-graph) that represents the pos-
sible explanation of a data stream. Calculation of probabilities and suppression of
inconsistent explanations is performed using a forward-backward algorithm that, first,
tries to expend all possible solutions iteratively regarding the constraints and, second,
removes branches that did not reach the end of the data stream and equilibrates the
probabilities. Figure 2.7 is a example of CAS-graph based on the relationship repre-
sented in Fig. 2.6 where the two processes W1 and W2 have the following restriction:
both processes should start with a task R and conclude with a task N. Process W1 is
designed with two more constraints : P =⇒ D and D =⇒ ¬P.
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In [Faz+18a], further extensions are proposed. The authors extend their model so
that tasks might be represented by a succession of LLEs and not just only one per
task. In fact, the order of LLEs in a task is modelled by an automaton that provides
constraints during the construction of the CAS-graph, but the principle remains quite
the same. The second extension introduces a notion of erroneousness in the model and
allows the program to produce a graph with inconsistency. The construction algorithm
explicitly allows a certain number of mistakes per path in the graph. These mistakes
may be almost any kind of violation like rules broken in a process, LLEs generated
from a task that should not, etc. Each erroneous path is assigned with a loss coefficient
dependant of the number of violations observed along the path. Even if this extension
is interesting, the loss coefficient is arbitrary and provides no distinction between the
different types of violations.

The method proposed by Fazzinga et al. is certainly an interesting and complete ap-
proach since it proposes a fast method (few milliseconds) to compute MAP inference
and deduce which process was in progress on a specific data stream, but it remains
circumscribed to particular problems due to its structure. For instance, the intermedi-
ate level represented by the tasks seems to bring more restrictions than the case where
processes would be defined directly from the LLEs. It surely offers a certain level of ab-
straction but it degrades the expressiveness of the model10. Finally, it remains difficult
to grasp how expressive the model might be, since it is mainly focused on sequences
of events.

2.5 Other approaches

Many other approaches exist and, in this section, we present some of them briefly, as
they may use different tools to deal with uncertainty. But in some way they may be
related to previously presented works. Indeed, even if these approaches are based on
ProbLog [Kim+11], HMMs, Petri-nets, or grammars, their representation may easily
seen as equivalent to MLNs, Bayesian networks, or automaton-based methods with
a few modifications. As for the previous presented approaches, the main difference
comes from the understanding of uncertainty and what problem is tackled.

10Authors showed it possible to represent tasks as automata on LLEs, so why not directly represent
the processes as automata too
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2.5.1 ProbLog method

Skarlatidis et al. proposed to model uncertainty problems using ProbLog11 [Ska+15a].
The CE representation is based on Event Calculus and ProbLog is used to compute
uncertainty on the LLEs and propagate it along all possible recognitions of CEs. The
EC model is represented into the ProbLog formalism, mainly based on Horn’s clauses,
allowing computation of the theoretical exact probability for each CE. The authors
compared resilience to noises on the data-stream between their probability version
of EC and a non-probabilistic one, which imposed to use a threshold on the results
provided by the probabilistic version. Results showed the probabilistic approach in
order to be more robust than a non-probabilistic approach. This method is relatively
similar to the MLN approach proposed in [MD11], even if ProbLog and MLN seem,
intuitively, different tools to manipulate uncertainty. Indeed, both approaches rely on
techniques from the SAT community to find solutions of a logical problem and then
use these results to compute the probability of a CE.

2.5.2 HMM

Ré et al. proposed an approached based on HMM sampling and particle filter named
Lahar [Ré+08]. As in many other works, authors focus on RFID deployment and try
to fill uncertainty produced by inaccurate sensors. In the context of the article (cf.
Figure 2.8), RFID sensors locate positions of employees inside a building and Lahar
detects their activities like making a coffee, mostly using their positions along time.

On their approach, CEP is used over a probabilistic event database. A probabilistic
event database is composed of streams where a stream is a set of events with the same
type and key. For instance, a stream based on the event InRoom(person,room,T)12 lists
all the positions of a person person. Each event is associated with a probability regard-
ing its attributes values and principally, on their use case, localisation. A sequence of
event on a stream might be independent or Markovian13, but events between streams
are necessarily considered independent. The probabilistic event database is produced
using a particle filter.

The particle filter operates with the collected sensor data as input. Given a time
and a person’s position, the algorithm tries to predict the next position by sampling
regarding the distance between the previous position and the new one observed by

11cf. Section 3.2 for details on ProbLog.
12The event key is underlined.
13The choice to consider independence between events depends if the Lahar system is used online or

not.
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Figure 2.8: Schematic representation of the study case in [Ré+08]. RFID
reading has detected the person at instant 6 in the H1 zone, but its posi-

tion has been lost due to imprecise reading at time 7.

the captor. Each possible position is then weighted regarding the number of samples
(or particles) at the corresponding position. This defines a set of possible places along
with their probabilities for the next time, which will be reused to sample the follow-
ing instant. In the case of independent streams, particle generation only depends on
the input value of the sensors. When the process terminates, the probabilistic event
database is complete.

CE recognition is performed on the newly constituted database using Cugoya’s
semantics [Dem+06] to define CEs. Briefly, Cugoya’s system supports sequences,
Kleene’s plus and may define conditions on the attributes or relations between ele-
ments in the database. For instance, the following query:

qAnyCoffee =σθ1(At(p, l1); At(p, l2)+⟨{p}, θ2⟩; At(p, l3))

where θ1 = Person(p) AND Office(p, l1) AND CRoom(l3) (2.11)

and θ2 = Hall(l2)

looks for any person that went from his office to the coffee room passing by the hall.
A query is defined with sub-goals like At(person, room) that define a relation between
attributes of events without time considerations. θ1, θ2 are conditions on the query.
The Kleene operator is defined with a specific syntax that specifies the condition and
shared variable along for each event captured by the Kleene operator. For instance,
in equation 2.11, sub-goal At(p, l2)+⟨{p}, θ2⟩, which captures events where a person
passes through a hall, has a shared variable p, which should always be the same
between the captured events, while l2 is free. Consequently, this operator may capture
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when a person passes through different halls.
The authors proposed four different algorithms associated to different types of

query, namely Regular, Extended Regular, Safe or others14:

• Regular Queries assert that sub-goals share no variable. Authors show that
this type of query may be solved linearly on the size of the database using a
transformation from the query to NFA and then to Markov chain.

• Extended Regular Queries assert that if a variable is shared between sub-goals,
it is a shared among all sub-goals and is a key in each of them. The algorithm
is the same as for regular queries, except that it should be performed on every
possible value of the shared variable, leading the algorithm to create a Markov
chain for every possibility.

• Safe Queries assert that queries that where not at least extended regular might
be defined as a sequence of extended regular sub-queries that allows the algo-
rithm to solve these queries in O(|W|2) withW the probabilistic event database.

• Other Queries are computed using a sample algorithm that runs the query mul-
tiple times on the database and counts when it is satisfied.

Even if this approach is only based on sequence and Kleene operators to define
temporal relations, it introduces some interesting ideas. Surprisingly, this work is one
of the few that use particle filters to produce conditional probabilities from an event to
the next one. Other approaches usually prefer to represent failure detection of sensor
with prior marginal probability. Furthermore, this study provides efficient algorithms
for the three main categories of queries, even if queries that do not enter these types
are more or less dismissed.

2.5.3 Petri-net approaches

Some works propose using Petri nets to represent CEs or/and uncertainty. A Petri-net
is defined as a tuple (P, T, F) where P is a set of places, T a set of transitions, F a set of
arcs with F ⊂ (P× T) ∪ (T × P). In the example, in Figure 2.9, places are represented
by the blue circles, the transitions by the black rectangle, and the arcs by the edges.

For instance, Albanese et al. [Alb+08] represent a CE as a Probabilistic Petri Net
(PPN). A PPN is a classical Petri net but allows setting probabilities on initial places
and transitions. Computation of probabilities follows a set of rules regarding the

14Queries that do not belong to the three previous categories.
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topography of the Petri-net. When firing a transition with a constrained transition
probability, the resultant probability is the product of the probability computed at the
previous place times the transition probability (cf. Figures 2.9a and 2.9b). In case of
concurrent transitions (cf. Figures 2.9c and 2.9d), places derived from the transition
share the same probability as the previous place. And, in case of synchronization (cf.
Figures 2.9e and 2.9f), the derived place probability is the product of the previous
places probability.

Probability p is computed regarding a specific CE and a data-stream by following
the sequence of states along the Petri-net. Then, the relative probability prel is computed
by prel = p

pmax
, where pmax is the maximum probability achievable by the Petri net

regarding all possible sequences. The authors provide a method to compute this pmax

probability.
Even if this approach is based on Petri net representations of CE, uncertainty is

computed in a way quite similar to the automaton-based approaches proposed by
Albanese [Alb+07; Alb+11].

Another Petri-net-based approach is proposed by Lavee, Rudzsky, and Rivlin [LRR13]
where, as in [Alb+08], CEs are represented by a Petri net, but this formalism is not re-
ally used for uncertainty computation afterwards. The structure is used to define a
Bayesian recursive filter to estimate the confidence on the designed CE regarding ob-
servations provided by the data stream. The authors suppose the first-order Markov
assumption and assume the model to be dynamic, since the state of the system is sup-
posed to be dependent of its previous state in time. This approach is really similar to
[MM07] but the relational structure between LLEs is initially defined by the Petri net.

2.5.4 Grammar approaches

Finally, we want to present some works based on grammar representations. One of the
interesting aspects of such an approach is that CEs are represented using context-free
grammars, which means it is possible to describe theoretically a CE not represented
by Deterministic Finite Automaton (DFA).

Most of the works using grammars are extensions of stochastic context-free gram-
mars (SCFGs) [Sto95], which offer a framework to transform a grammar into a HMM
representation. In this formalism, each production rule from the grammar may have a
probability associated:

A→ λ[p] (2.12)
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Figure 2.9: PPN computation rules from [Alb+08].
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The production rule in equation 2.12 as a probability p = P(A → λ) to be chosen.
Note that this probability is in fact conditional since it may be chosen only if the non-
terminal A has to be expanded. Rules in a grammar are independent so the probability
for a particular complete derivation is just the product of the probabilities of the rules
used in the derivation.

SCFG computation is based on the Earley-Stocke parsing algorithm [Ear70], which
uses a specific notion of state. A state Si

k is defined as follows:

i : Xk → λ.Yµ [α, γ] (2.13)

where X and Y are non-terminals, λ and µ are sub-strings, and the dot “.” refers
to the current position in the input stream. Indices i and k indicate respectively the
marker and the starting position of X. Variables α and γ represent prefix and inner
probabilities. The prefix probability α is the probability of the parsed stream up to
position i and inner probability γ is the probability of the sub-stream starting at k and
ending at i.

The Earley algorithm performs three steps to expend the derivation tree, called pre-
diction, scanning, and completion. The prediction step looks for possible derivation states
regarding the leftmost states in the derivation tree. Then the scanning step matches
the predicted state with the stream to keep only relevant states. Finally, the completion
step updates marker positions according to the scanning. During this process, new
probabilities α′ and γ′ are calculated. For instance, during the completion, if the po-
sition marker is at j, Xk → λ.Yµ, it might be advanced if there is a state starting at j
where i : Yj → ν., which is a state consuming, after scanning, the v sub-string. Marker
position is updated accordingly:l j : Xk → λ.Yµ [α, γ]

i : Yj → ν. [α′′, γ′′]
=⇒ i : Xk → λ.Yµ [α′, γ′] (2.14)

and α′ and γ′ are computed regarding all possible derivations:

α′ = ∑ν α(i : Xk → λ.Zµ)RU(Z, Y)γ′′(i : Yj → ν.)
γ′ = ∑ν γ(i : Xk → λ.Yµ)RU(Z, Y)γ′′(i : Yj → ν.)

(2.15)

where RU is a reflexive transitive closure of unit production relation between non-
terminals in the grammar which are simply the probabilities to produce a specific
non-terminal through a given one.
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SCFG is initially used to generate and select uncertain derivations, but cannot deal
with missed detections and insertion errors into data-streams. Ivanov and Bobick
[IB00] modified slightly this approach to deal with these kinds of error, allowing to
provide, on data-streams, LLEs together with their recognition probability. Similar
approaches based on stochastic context-free grammars are proposed in [ME02; MES03].
In addition, Ryoo and Aggarwal propose in [RA06] to construct HMMs through the
grammar, but the main difference with [IB00] is the possibility to represent interval
dependencies. In more recent work [RA09], probability uncertainty is computed using
a Constraint Satisfaction Problem (CSP) approach, which provides optimal evaluation
but is NP-hard to solve.

2.6 Conclusion

In this chapter, we have provided a detailed reading of the main objectives for CEP
under uncertainty and more specifically shown that it might not be realistic to propose
a method that performs well on every one of them. The variety of CE and uncertainty
representations, the diversity of uncertainty computations, and the range of needs for
each particular domain leads to this profusion of works and approaches.

Among all approaches, MLNs remain, indubitably, the most expressive. Concep-
tually speaking, MLNs may be used to model every possible structure. Furthermore,
since this model manages uncertainty on logical rules, it is quite easy to represent
hard constraints rules, which is almost only possible with MLNs compared to other
approaches. But, as we discussed in Section 2.2.4, the models proposed by the commu-
nity seem to be of reduced size and only few works provide information regarding the
time performance of their approach. Additionally, uncertainty weight representation
seems to be cumbersome to use properly when constructing a model without learn-
ing it. Finally, logical rule semantics may lead to a counter-intuitive understanding of
relations in the model. We did not discuss this too much in this chapter, but it has
been addressed by Jain in [Jai11] and we provide a good example to understand this
problematic later on in this thesis in Section 5.1.

Even if, at first glance, it may be counter-intuitive, the ProbLog approach proposed
in [Ska+15b] is quite related to MLNs. Indeed, both approaches focus on finding solu-
tions for a FOL problem using solvers provided by the SAT community and both have
almost the same level of expressiveness, since they both rely on FOL, and may define
hard rules on the model. The main difference would be the probabilistic inference,
which is based on approximate methods for MLNs and exact ones for ProbLog.
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In contrast with MLNs, Bayesian networks or DBNs provide a simple represen-
tation of uncertainty with clear probabilistic dependences and come with efficient
techniques to perform inference on these structures. But existing works do not com-
pletely mix this representation with a well-defined CEP semantic and seem to be more
a collection of ad-hoc approaches for CE representation. This observation does not
apply for the works based on CEP2U [Cug+15], but even for this approach, Bayesian
networks are not used along with the CE model, but only as method to provide con-
textual information after the recognition of a CE.

While Bayesian network approaches provide better formalism for uncertainty but
lack structured CE representation, automaton-based methods tend to suit well CE
models. This seems quite understandable as automata provide an intuitive representa-
tion for successions of elements or repetition of patterns15. Computation of uncertainty
is usually based on the enumeration of possible recognitions, with eventually branch
and bound techniques. In our opinion, computations performed and uncertainty rep-
resentations are closely related to DBN or HMM, but they are almost never addressed
that way in the different works except in the work of Demers et al. [Dem+06]. HMMs
are also used in other approaches quite similar to automata like those based on Petri
nets and grammars.

15There is no surprise in finding quite often Kleene operator in the semantics of these models.



77

CHAPTER3
Background

Contents
3.1 Markov Logic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.1 Markov network . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.2 Markov Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 ProbLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Non-homogeneous Markov models . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2 Construction of the NHM . . . . . . . . . . . . . . . . . . . . . . 91

I
n the previous chapter, we introduced the state of the art for CEP under
uncertainty and showed the diversity among the various approaches de-
ployed to this end. For this thesis, based on our review, we tried several

approaches and tools and studied their performance. As these tools come from the
state of the art, they are not exactly part of this thesis, but it remains necessary to in-
troduce them properly so as to understand the impact they might have on the models
that we proposed.

Section 3.1 presents the MLN formalism and the Markov logic semantic that is
used in Chapter 4. This introduction focuses on inference and specific details about its
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sampling method based on WalkSAT. Section 3.2 introduces the fundamental aspects
of ProbLog which is used in Chapter 5. Finally, Section 3.3 presents the concept of
non-homogenous Markov models (NHMs) and, in particular, its construction method
as presented in [PRB11].

3.1 Markov Logic Networks

As presented in section 2.2, plenty of studies used MLNs to integrate uncertainty into
CEP formalisms or related domains. MLNs [RD06] aim at offering an easy method
to combine probabilities and logic. Indeed, logic is an easy and understandable way
to represent a problem or a system, but is limited when trying to express erroneous
behaviour or uncertainty and lack of methods to produce evaluations of this uncer-
tainty. Indeed, it is easy with logic to define that two things are equal or different,
but difficult to express a degree of similarity. In contrast, Probabilistic Graphical Mod-
els (PGMs) offer well-established methods to deal with uncertainty, but it might be
difficult to design complex relationships between elements. Usually, PGMs mostly
capture correlation, but not necessarily causality, which might be easily described by
logic. MLNs aim at combining these two domains with the purposes of benefiting
of the expressiveness of both FOL and the probabilistic representation of PGMs. For
short, the formalism of MLNs proposes a method to transform a set of formulae into a
Markov network. We now present this formalism together with the existing inference
techniques that have been used during this thesis.

3.1.1 Markov network

A Markov network or Markov random field (MRF) is a model representing a joint dis-
tribution of variables X = (X1, . . . , Xn) ∈ X [Kin80]. It is represented as an undirected
graph G and a set of potential functions ϕk. Each variable is represented by a node
in the graph and each clique between connected nodes is associated to a potential
function. The joint distribution among variables in X is given by:

P(X = x) =
1
Z ∏

k
ϕk(x{k}) (3.1)

where x{k} is the combined state of the variables of the kth clique and Z is the par-
tition function, which is a summation over all possible values of X, expressed as
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Z = ∑x∈X ∏k ϕk(x{k}) and assert normalisation of equation 3.1 by summation to one
of all values of X.

The joint distribution might be rewritten in an exponential form using features fk:

P(X = x) =
1
Z

exp

(
∑

k
wk fk(x{k})

)
(3.2)

where wk is a weight associated to the feature function. Features fk are commonly
seen as indicators on the value of the cliques. Exact inference in a MRF is #P-complete
so, generally, approximate inference is preferred, using MCMC techniques like Gibbs
sampling.

3.1.2 Markov Logic

In FOL, a first-order knowledge base is expressed as a set of formulae applied on a set
of variables. A possible set of values for these variables is called a world and may either
satisfy the knowledge base or violate it. In Markov logic, the logic semantics used to
describe MLNs, a world may violate only partially a knowledge base. Formulae are
associated with a confidence value indicating a trust factor of a formula. If the value
is high, the formula should be less likely to be violated, while a low value indicates
that a formula may be easily broken. Each formula in Markov logic is described as a
FOL formula, but combined with a weight expressing the importance of the formula
in the knowledge base. It is possible to represent a hard formula by setting the weight
associated to an infinite value.

Definition 3.1.1. As defined in [RD06; DL09], a Markov logic network L is a set of pairs
(Fi, wi), where Fi is a formula in first-order logic and wi is a real number. Together
with a finite set of constants C = {c1, c2, . . . , c|C|}, a Markov network ML,C is defined
as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L.
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L.

Based on definition 3.1.1, a MLN might be seen as a relational model between
predicates that can be instantiated regarding a set of constants C, where constants
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English FOL Clausal form Weight

Friends of
friends are
friends

∀x∀y∀z Fr(x, y) ∧
Fr(y, z) =⇒ Fr(x, z)

¬Fr(x, y)∨¬Fr(y, z)∨ Fr(x, z) 0.7

Smoking causes
cancer

∀x Sm(x) =⇒
Ca(x)

¬Sm(x) ∨Ca(x) 1.5

Friends have
same smoking
habits

∀x∀y Fr(x, y) =⇒
(Sm(x)⇔ Sm(y))

¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y),
¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y)

1.1
1.1

Table 3.1: Example of a first-order knowledge base and MLN. Fr() is
short for Friends(), Sm() for Smokes(), and Ca() for Cancer() [RD06].

are truth values assigned to a set of predicates. Formally, each formula is valued,
i.e. grounded, with each possible constant. The newly grounded predicates are the
nodes of the network. Two nodes are connected by an edge if they appear in the same
formula. Consequently, the probability distribution over possible worlds x is given by:

P(X = x) =
1
Z

exp

(
∑

i
wini(x)

)
(3.3)

where ni(x) is the number of true groundings of Fi in x. Formulae Fi are only ex-
pressed in Cunjunctive Normal Form (CNF) (or clausal form) and quantifiers are sup-
pressed. CNF formulae are convenient for evaluation since they only need one true
term to be true also: this representation allows for lazy implementation for inference
[DL09]. While universal quantifiers might be directly suppressed as results of the
grounding phase, existential quantifiers are suppressed through Skolemization, which
modifies the formula by replacing existentially quantified terms by a disjunction of
their groundings.

For instance, Table 3.1 present an example of a knowledge base expressing existing
potential relations between being friends, smoking, and having cancer expressed in
English, in FOL, and in CNF1. Each formula is associated with its own confidence
weight as they might not be always true. Figure 3.1 represents the ground Markov
network from the two last formulae in Table 3.1 with constants “Anne” and “Bob”.
Each clique on the graph is the graphical representation of a grounded formula in its
clausal form.

1The reader may notice that the third formula in the table is separated into two formulae in CNF.
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Friends(A,A)

Smokes(A) Smokes(B)

Friends(B,B)

Cancer(A) Cancer(B)

Friends(A,B)

Friends(B,A)

Figure 3.1: Ground Markov network obtained by applying the last two
formulae in Table 3.1 to the constants Anna(A) and Bob(B). Larger edges

indicates higher weights [RD06].

3.1.3 Inference

MLNs allow performing two types of inference: MAP inference, which will look for
the most probable world consistent with evidences, and conditional inference of prob-
abilities for predicates or formula over all possible worlds.

3.1.3.1 MAP inference

MAP inference aims at finding the most probable world x consistent with evidences
e. Evidences are expressed as truth values of a subset of grounded predicates in the
MLN L. Formally, the process is expressed as follows:

arg max
x

P(e|x) = arg max
x

1
Ze

(
∑

i
wini(e, x)

)
= arg max

x
∑

i
wini(e, x)

(3.4)

Computation for this problem is performed using weighted variants of FOL solvers.
Theoretically, both exact and approximate might be used to this purpose. Richardson
and Domingos suggested to use MaxWalkSAT to this task, a weight version of the
well-known WalkSAT, a local-search satisfiability solver [SKC+93].

MaxWalkSAT is described as Algorithm 1. Its goal is to find the best possible assign-
ment of all values for a knowledge base. As the algorithm does not necessary converge
to the optimal solution (or reaches the given threshold), search is generally started sev-
eral times to begin with different random worlds, which might lead to better solutions.
This number of restarts mt is bounded as an input of the algorithm. Moreover, since
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Algorithm 1: MaxWalkSAT(KB, mt, m f , target, p) [PD06]

inputs : KB, a knowledge base in CNF
mt, maximum number of tries
m f , maximum number of flips
target, target solution cost
p, probability of random step

outputs : soln, best variable assignment found
1 vars← variables in L
2 for i← 1 to mt
3 soln← a random truth assignment to vars
4 cost← sum of weights of unsatisfied clauses in soln
5 for i← 1 to m f
6 if cost ≤ target
7 return soln
8 c← a randomly chosen unsatisfied clause
9 if Uniform(0, 1) < p

10 v f ← a randomly chosen variable from c
11 else
12 for each variable v in c
13 v f ← v with lowest DeltaCost
14 soln← soln with v f flipped
15 cost← cost + DeltaCost(v f )

16 return soln
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there is also no way to determine whether the solver will quickly reach a global opti-
mal solution, each try is bounded to a number of flips m f where a flip is a change of
truth value of one ground predicate, this cap also being an input to the algorithm.

One try-iteration goes as follows. First, each predicate of the knowledge base is
assigned to a random truth value. Then the solver will perform m f flips on the knowl-
edge base. Each flip is applied on a predicate from an unsatisfied clause. The choice
of the predicate inside the clause may be done according to two strategies selected
randomly with respect of an input probability p. If the first strategy is selected the
predicate is randomly chosen in the clause, otherwise the solver chooses the predicate
that minimizes DeltaCost(v f ), which is the function that computes the difference in
the sum of the weights of the unsatisfied clauses. This function is easy to compute
since the cost variation is conditioned only by the clauses connected to the modified
literal.

Even if MAP inference is not used in this thesis, various methods has been pro-
posed since then, with much better results at both precision and speed [Hur+16;
Rie12].

3.1.3.2 Conditional inference

Theoretically, inference queries with MLNs might cover probability estimations of a
formula F1 conditionally to a second formula F2 where F1 and F2 are not necessary in
the knowledge base. Then, given a set of constants C and a MLN L:

P(F1|F2, L, C) = P(F1|F2, ML,C)

=
P(F1∧F2,ML,C)

P(F2,ML,C)

=
∑x∈XF1

∩XF2
P(X=x|ML,C)

∑x∈XF2
P(X=x|ML,C)

(3.5)

where XFi is the set of worlds where Fi holds, and P(X = x|ML,C) is given by Equation
3.3. Generally, F1 and F2 are conjunctions of 0-arity predicates making the problem
much simpler since it is not necessary to find logical solutions for F2. Even if both
query and evidence formulae are conjunction of 0-arity predicates, exact inference
might be intractable except for a small domain. Consequently, approximate inference
using MCMC estimation is preferred. Originally, in [RD06], the authors propose to use
Gibbs sampling to perform inference where ground nodes are sampled in an arbitrary
order given their Markov blanket. The Markov blanket of a ground atom is the set of
ground atoms that appear in some grounding of a formula with it. The probability of
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x(k)

u(k)

x(k+1)

Slice S

x

f(x(k))

Figure 3.2: Graphical representation of a slice step during sampling.

a ground atom Xl when its Markov blanket Bl is in state bl is:

P(Xl = xl |Bl = bl) =
exp(∑ fi∈Fi

wi fi(Xl = xl , Bl = bl))

exp(∑ fi∈Fi
wi fi(Xl = 0, Bl = bl)) + exp(∑ fi∈Fi

wi fi(Xl = 1, Bl = bl))
(3.6)

where Fl is the set of ground formulas that Xl appears in, and fi(Xl = xl , Bl = bl) is
the value (0 or 1) of the feature corresponding to the ith ground formula when Xl = xl

and Bl = bl .

MC-SAT The authors noted that Gibbs sampling breaks down when the knowledge
base has deterministic dependencies2 [PD06; DL09]. To solve this issue, they proposed
another MCMC technique that samples called MC-SAT [PD06] based on satisfiability
and simulated annealing.

Slice sampling [Nea03] aims at sampling a distribution for a variable x defined by a
function f (x). The sampling process is iterative and follows a few simple steps, given
an x(k) value:

1. Sample a u(k) value uniformly between {0, f (x(k))}.

2. Sample an x(k+1) value uniformly over the slice region S = {x : u(k) < f (x)} (cf.
Figure 3.2).

2In case of hard constraints corresponding to formulae with infinite weights.
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Algorithm 2: MC-SAT(L, n)
inputs : L, a set of weighted clauses {wj, cj}

n, number of samples
outputs : {x(1), . . . , x(n)}, set of n samples

1 x(0) ← Satisfy(hard clauses in L)
2 for i← 1 to n
3 M← ∅
4 for all (wk, ck) ∈ L satisfied by x(i−1)

5 With probability 1− e−wk add ck to M
6 Sample x(i) ∼ USAT(M)

7 return {x(1), . . . , x(n)}

3. Repeat from the first step with the new value x(k+1) until enough samples have
been produced.

Slice sampling requires u(k) to be sampled uniformly over the slice region S, which
might be difficult to obtain.

The full MC-SAT algorithm is described in Algorithm 2. MC-SAT starts from a
generated sample x(0) using a solving algorithm on hard clauses. Grounded predicates
unaffected by hard clauses are sampled randomly within [0, 1]. Then, the algorithm
selects a subset M of the satisfied clauses from this world x(0), where each clause
(w0, c0) might be added to M with probability (1− e−w0). Each clause in M will be
temporarily considered as hard-constrained when a new world x(1) is sampled from
the current world x(0). This process is, then, iterated until the required number of
samples has been performed.

This algorithm needs to call a satisfiability solver during initialisation and sam-
pling. The initialisation of x(0) is performed using WalkSat, which is required by the
slice sampling approach since it produces a better overall sampling when the initial
world is a good solution [Nea03]. Sampling of x(i) is performed using SampleSat which
is a modification of MaxWalkSat with simulated annealing and is described below.

SampleSAT SampleSAT is proposed by Wei, Erenrich, and Selman [WES04] to sam-
ple uniformly over the space of satisfying assignments of a given FOL knowledge base.
The solver uses a mixture of two strategies, selected randomly regarding a probability
p, to flip a predicate. The first one is a random walk strategy using WalkSAT3 and

3We did not present WalkSAT, but only its weighted version. Without weight the criterion used to
determine the best predicate is the difference of satisfied clauses.
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the second one is a simulated annealing [Met+53] approach to the FOL satisfiability
problem.

Applied on this problem, for one iteration the simulated annealing algorithm se-
lects a random neighbour assignment from the current state. An assignment is a
neighbour for another one if it differs from only one truth value assignment on a pred-
icate. If the cost variation (∆Cost, the difference number of satisfied clauses) decreases,
this neighbour is selected. Otherwise, the algorithm chooses to move to this neighbour
with a probability e−∆Cost/Temp. Temp is usually dynamic in this type of algorithm, but,
in this particulat case, it is a fixed value4.

Simulated annealing is known to be less efficient than WalkSAT [SKC+93; WES04],
but the idea behind this hybrid method is to use WalkSAT in the first steps of solving
to reach a solution and then to rely on temperature annealing to explore the cluster
of satisfiable assignments. This hybrid method decreases the performance to find
satisfiable assignment, but samples over the solution space much more uniformly than
WalkSAT.

SampleSAT with MLN For conditional inference, the SampleSAT algorithm is slightly
modified to deal with weights on MLN. Consequently, the algorithm uses MaxWalk-
SAT instead of WalkSAT and cost in temperature annealing is computed according to
weights.

Since samples are supposed uniform, conditional probabilities for a predicate or a
query might be evaluated by counting in which samples the query formula or predi-
cates is satisfied.

In this section, we just discussed inference with MLNs, as it is necessary for this
thesis, but state-of-the-art works on MLNs propose multiple algorithms for weight and
structure learning, lazy inference, extensions to continuous domains, infinite domains
or recursive models, etc. We will not discuss these matters, but readers may refer to
[DL09] for further details.

3.2 ProbLog

In this thesis, we used MLNs to perform approximate inference to compute probability
estimation of chronicles over uncertain executions of systems. Even if approximate
inference is preferred to improve speed computation, MLNs unfortunately do not offer

4For SampleSAT, the authors manually tuned this parameter to 0.1 [WES04].
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fast inference and attempts to make it more tractable bring important expressiveness
restrictions [DW12]. Furthermore, approximate methods are not fully reliable and it
might be difficult to estimate this reliability when solving large theoretical models
without any real data to assert the results. In this situation, a tool performing exact
inference might be beneficial to compare results provided with approximate methods.
Moreover, it is interesting to study the limits of such approaches when applied on
problems related to CEP. In this section, we present ProbLog [RKT07], the tool we
used in this thesis to represent chronicles and achieve the previously specified tasks.

A ProbLog program follows a Prolog-like semantics except that every clause ci is
labelled with a probability pi. For instance, Listing 3.1 describes appreciation of people
regarding their friendship relations: if two people are friends, they should like each
other with probability 1 and friends of friend might like each other with a proba-
bility 0.8.

1.0:: likes(X,Y):- friendof(X,Y).
0.8:: likes(X,Y):- friendof(X,Z), likes(Z,Y).
0.5:: friendof(john,mary).
0.5:: friendof(mary,pedro).
0.5:: friendof(mary,tom).
0.5:: friendof(pedro,tom).

3.1: ProbLog code example [RKT07].

Formally, given a ProbLog program T = {p1 : c1, . . . , pn : cn}, the probability
distribution over logic programs L ⊆ LT = {c1, . . . , cn} is defined as:

P(L|T) = ∏
ci∈L

pi ∏
ci∈LT\L

(1− pi) (3.7)

A ProbLog program usually tries to compute the probability of a specified query q
and, more precisely, its success probability P(q|T) defined by:

P(q|L) =

1 ∃θ : L |= qθ

0 otherwise
(3.8)

P(q, L|T) = P(q|L) · P(L|T) (3.9)

P(q|T) = ∑
M⊆LT

P(q, M|T) (3.10)
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This corresponds to the probability that the query q has a proof θ given the distribution
over logic programs.

In practice, this approach is intractable considering all logical programs needing
to be computed. The common approach employs Selective Linear Definite clause
resolution (SLD resolution), and BDDs. SLD resolution is used to compute proofs
of a query on a logical program into a SLD-tree. Each proof is independent of others
and is defined by a set of clauses that proves it. Consequently, the probability of this
proof is ∏i pi, where pi is the probability of the clause ci that was used for the proof.
Therefore, the probability of a query is the summation of the probability of its proofs.
Since each proof may be seen as a conjunction of terms, a query may be seen as a
disjunction of its proofs which is its Disjunctive Normal Form (DNF). Unfortunately,
computing directly the DNF probability is quickly intractable, so it is preferred to
transform the SLD-tree of a given query into BDDs.

A BDD is a oriented graph structure representing a logical formula where each
node on the ith level is labelled with the ith variable in the formula5 (given a specific
order of the variables). Each node has two outgoing edges, namely high and low, which
correspond respectively to a 1 and 0 assignment. The structure has only two terminal
nodes, 1 and 0, representing whether the assignment6 does or does not satisfy the
formula. This structure may be easily derived from the SLD-tree. For example, given
proofs for a query in a logical program represented by the formula (¬X1,¬X2,¬X3)∨
(X1, X2)∨ (X2, X3) in DNF, a possible resulting BDD would be like the one represented
in Figure 3.3. Note that, each Xi correspond to a clause c ∈ T used to prove the query.
The variable order used to construct the BDD may have a huge impact on the tree
structure. Many heuristics exist to reorder automatically variables and reduce the
overall structure.

Given a BDD, probability might easily be computed following algorithm 3. Inter-
estingly, conditional probabilities of a given query, in regard with evidences, might be
computed effortlessly if the BDD structure without evidence is known. For instance,
in Figure 3.3, if the boolean variable X2 was set true as evidence, during the algorithm
traversal, the low child of node X2 would be blocked and the probability of the node
set to 1.

Current state of the art of ProbLog does not use BDD anymore [Fie+15; Dri+15]
and relies on Deterministic Decomposable Negation Normal Form (d-DNNF)[Dar01;
Dar04] or SDD[Dar11]. These structures provide specific advantages compared to BDD

5Nonetheless, not all variables in the formula appear necessarily in the BDD.
6An assignment may be seen as one path from the initial node to a terminal node in the structure.
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1

1
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Figure 3.3: BDD example for formula
(¬X1,¬X2,¬X3) ∨ (X1, X2) ∨ (X2, X3)

Algorithm 3: Recursive algorithm for probability computation at a given node
n in the BDD [RKT07]

function Probability(node n)

inputs : n, a node in the BDD
outputs : The probability of the formula represented by the tree rooted in n

1 if n is the 1-terminal
2 return 1
3 if n is the 0-terminal
4 return 0
5 let h and l be the high and low children of n
6 prob(h) = Probability(h)
7 prob(l) = Probability(l)
8 let pn the marginal probability of n ∈ T
9 return pn · prob(h) + (1− pn) · prob(l)
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like better guarantees on the size structure which improve overall time construction.
We do not go into further details on these structures and their construction algorithm
since it is not necessary in the context of this thesis and probability computation re-
mains quite similar between BDD, d-DNNF, or SDD.

3.3 Non-homogeneous Markov models

The last necessary tool to introduce for this thesis is NHM. NHMs follow the Markov
property, meaning that a modelled system changes conditionally regarding its last
state, but they distinguish themselves from standard Markov chains that state change
probabilities are not uniform during an execution. Consequently, NHMs might ex-
press more complex dependencies, in particular over time, but might be harder to
describe. For this reason, this section focuses on a method introduced by Pachet, Roy,
and Barbieri [PRB11] that defines a NHM from a standard Markov chain and a set of
unary and binary constraints.

3.3.1 Context

Initially, this approach is used to generate samples of music for a particular style
of music. The style is supposed to be learned as a simple Markov model M that
stores the probability that a note is played after another. But, the authors desire to
generate samples under a set of constraints representing specific musical properties
or structures. Formally, the problem might be described as follows: given a Markov
process M defines over a finite state space A = a1, . . . , an and a sequence s = s1, . . . , sL

with si ∈ A, S is the set of all sequences of length L generated by M with a non-zero
probability:

PM(s) = PM(s1) · PM(s2|s1) · · · · · PM(sL|SL−1) (3.11)

Defining V1, . . . , VL with Vi ∈ A a set of constraints variables representing states
that might appears at a specific length i. States unexpressed in Vi cannot happen at
length i. Regarding these constraints and the Markov process M, the set S produced by
M is now constrained to a set SC. Given these notations, the authors define a Markov
process M̃ verifying the two following properties:

PM̃(s) =

0 if s ̸∈ SC

PM(s|SC) otherwise
(3.12)
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These properties assert that M̃ generates exactly the sequence s ∈ SC and that se-
quences in SC have the same probabilities in M and M̃ up to a constant factor α =

PM(s ∈ SC) so ∀s ∈ SC, PM̃(s) = 1/α · PM(s). Authors show that such process might
be described into a NHM represented by a set of L transitions matrices M̃(i).

3.3.2 Construction of the NHM

The construction of the NHM is dependent of a specific case of CSP named Binary-
Sequential CSP (BSC). A BSC is a set of unary constraints U1, . . . , UL and binary
constraints B1, . . . , BL−1. Unary constraints Vi might be seen as states restrictions at
given length i. Binary constraints Bj allow representation of conditional constraints
by defining the possible transitions from states at time j to j + 1. Given ak, am ∈ A,
if Bj(ak, am) = False it implies that the probability of transition in the NHM should
be null PM̃(j)(am|ak) = 0. Construction of the NHM M̃ from the Markov model is
performed in two steps.

Constraints transposition First step generates L intermediate sequential matrices
Z(i) from the initial Markov model M. M is represented as a simple matrix, but it
should be defined with prior probabilities noted M0. Construction process for the Z(i)

is the following:

• Z(0) = M0

• Z(i) = M, ∀i = 1, . . . , L− 1

• For each ak ∈ A removed regarding Vi: Z(i)
j,k = 0, ∀j = 1, . . . , n (set the k-th

column to zero)

• All forbidden transitions regarding the binary constraints Bi should be removed
from the matrices: Z(i)

j,k = 0∀i, j, k such that Bi(aj, ak) = False

Normalisation The matrices M̃(i) from the NHM M̃ are then constructed from the
Z(i) matrices by normalisations. Normalisation might be done on each matrix indi-
vidually, but it would break the properties defined in Equation 3.12. Indeed, the
initial probability distribution of sequences should be preserved so normalisation is
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performed with backward algorithm:

M̃(L−1)
j,k =

Z(L−1)
j,k

α
(L−1)
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Note that α(0) is the probability factor that a sequence s satisfies the constraints α(0) =

PM(SC).
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A
s shown in the state of the art in Chapter 2, MLN is one of the most popular
approaches to represent uncertainty in CEP. Furthermore, this approach
does not just exist in the CEP community but also appears regularly in

the video analysis domain. Most of the existing works seem to produce interesting
results and the expressiveness of Markov logic looks sufficient at first glance to justify
this choice to represent a chronicle model with uncertainty. In this chapter, we present
our representation of chronicles using MLNs and show that the logical formalism may
lead to counter-intuitive representations. The first results that we obtained showed
inconsistent recognitions even on small problems. We will show that these inconsis-
tencies are caused by poor sampling during the inference produced by MC-SAT and
in particular by the WalkSAT algorithm used to reach a solution. We show that per-
formance of the algorithm is highly related to specific problem structures. All of our
experimentations were conducted using Alchemy 2.01 to test our models and produce
inference estimations.

In Section 4.1, we present our representation of chronicles based on Markov logic
and detail a specific case that may seem quite counter-intuitive. Due to inconsistent
results with our representation, we present in Section 4.2 our work to explain these
inconsistencies produced by MC-SAT during the inference, providing examples and
experimentations. Finally, in Section 4.1.2 we discuss the consequences of these results
as to our objectives.

4.1 Chronicles expressed with logical rules

As a quick reminder, we want to represent a chronicle model in MLN where events on
the data-stream might be erroneous or missing, and still be able to provide a probabil-
ity for a given CE. We aim at representing a generic context-free model that may be
reused independently of the domain. Furthermore, we want the model to be able to
deal with hard rules and more specifically the possibility to define a CE as an obser-
vation for the inference. We detail in this section how we structured the rules of the
model to fulfil these requirements.

1https://alchemy.cs.washington.edu/
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4.1.1 Chronicle semantic in Markov logic

Markov logic, which we presented in Section 3.1, consists mainly of a set of FOL
formulae associated to weights representing the confidence on each formula. Our
representation of Chronicles in MLN consists consequently just in a set of logical for-
mulae. These formulae are defined using a few predicates that we will soon detail. For
reminder, in Markov logic semantic, by convention variables start with a lower case
letter and constants with an upper case letter. Predicates start with an upper case letter
like constants but are usually associated with a set of constants and variables between
parentheses like Predicate(var, Const) where var is a variable and Const a constant as-
sociated to the predicate Predicate. To construct a formula, common operators of FOL
are accepted: logical and (∧), logical or (∨), implication ( =⇒ ), equivalence ( ⇐⇒ ).
Universal ∀ and existential ∃ quantifiers might be used on variables, and unquantified
variables are by defaults assumed to be quantified universally. Even if we will mostly
not use weight in this model, semantically speaking, a weighted formula is indicated
with its weight in front of it. At the opposite, when a formula is hard2, in Markov
logic, it is indicated with a dot at the end of the formula. We kept this semantics in
this thesis.

Let us present the main three predicates that we used and their meaning. They
are listed in Table 4.1. Predicate Ev(e, t) describes an LLE in the data stream and is
defined with two parameters, which are its type and the time of detection in the data
stream. In this representation, LLEs are supposed to happen at specific time points.
Predicate Ch(c, t1, t2) represents a recognition of a chronicle of type c starting at time
t1 and finishing at time t2. Note that, contrary to the predicate Ev, the type of the
chronicle c is defined inside the model, while the type e of the event is supposed to be
a known type provided by the data stream, which is not supposed to be created in the
model. Finally, we use two kinds of operator predicates. Binary operator predicates
are of the form OpX(c1, c2, t1, t2, t3, t4) and describe the meaning of one of the binary
operators defined in Section 1.2.4, X just represents the corresponding operator used:
e.g. the sequence operator is named OpSeq. Unary operator predicates, are of the
form OpX(c, t1, t2, δ) with a different set of parameters, e.g. OpAtMost represents the
recognition of a chronicle c with its start and end times t1 and t2 associated to a dura-
tion parameter δ. The meaning of parameter δ obviously depends on the considered
operator.

2Meaning it can not be violated by any world. Consequently the weight associated is supposed to be
infinite.
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Predicate Meaning

Ev(e, t) An LLE of type e observed at time t.
Ch(c, t1, t2) A chronicle of type c recognised from time t1 to t2.
OpX(c1, c2, t1, t2, t3, t4) A binary relational operator X between two chroni-

cles of respective types c1 and c2, respectively recog-
nised from t1 to t2 and from t3 to t4.

OpX(c, t1, t2, δ) A unary relational operator X defined by a specific
duration δ on a chronicle of type c recognised from
t1 to t2.

Table 4.1: List of predicates used for the MLN model

4.1.2 Data stream structure and LLEs dependencies

As we saw in Chapter 2, LLE uncertainty might be represented in different ways, but ,
for our model, we consider LLEs to be independent since we do not focus on specific
relationships between LLEs for now and just want to perform probabilistic inference
on designed CEs, even thought it would be quite easy to define at least first order
Markovian dependencies with MLNs. For instance, a rule

w Ev(X, t1) ∧ (t2 = t1 + 1) =⇒ Ev(Y, t2) (4.1)

defines a dependency between a X-type LLE and a Y-type LLE and means that the
probability of the Y event depends on the previously observed LLE and weight w. But,
since we choose a representation where LLEs are independent, they are represented by
a prior probability, which is modelled by defining a rule with only one predicate that is
an event type predicate. So, for instance, if the model had two LLEs of respective types
A and B with different marginal probabilities, they should be described as follows:

w1 Ev(A, t)

w2 Ev(B, t)
(4.2)

This representation is sufficient to describe a potential for LLEs, even if weights make
it quite difficult to know what is the prior probability of these events. The formulae
in Equation 4.2 may also be seen, in a different way, as a noisy detection in the data
stream, since they may produce events from nowhere.
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4.1.3 Chronicle rules

Chronicle predicates are used to define CEs in our model. By default, we suppose that
a LLE produces a chronicle of the same type with recognition times both equal to the
time of the detection of the event.

Ev(e, t) =⇒ Ch(e, t, t). (4.3)

This formula is hard since there is no reason to ignore data provided by the data
stream. Missing detection may be represented by the following rule

w ¬Ev(e, t) =⇒ Ch(e, t, t) (4.4)

which describes that a chronicle may be created even if no event is detected in the data
stream. With these rules, we define a set of rules that constrain our model and, in
particular, the parameters provided with the chronicle predicate:

Ch(c, t1, t2) =⇒ t1 ≤ t2. (4.5)

Ch(e, t1, t2) =⇒ t1 = t2. | for e a LLE type (4.6)

Equation 4.5 sets a constraint between t1 and t2, asserting that the beginning time of a
chronicle recognition is always equal to or smaller than the ending time. Equation 4.6
is a specific constraint on time recognition for our model that ensures that chronicles
produced by a LLE should have the same beginning and ending times. These rules
are necessary since they assert that grounded predicates that do not satisfy these rules
have a zero probability: without them, inconsistent grounded predicate would all have
a default 0.5 probability.

Before presenting how operators might be defined in this approach, we want to
address how a chronicle is constructed using the operators. Lets assume that operators
have been defined and follow the semantic presented in Table 4.1, chronicles may be
defined almost straightforwardly using these operators as constraints. Suppose, we
are parsing a data stream with four type of LLEs: A, B, C, and D and we want
to design a chronicle recognising a sequence of events A and B. Event chronicles
are already defined with Equation 4.3 so we only need the definition of a chronicle
Ch(AB, t1, t2). Remember that the constant AB is just a name for the chronicle type
and has no influence on the definition, which is provided with the following rule:

OpSeq(A, B, t1, t3, t4, t2) =⇒ Ch(AB, t1, t2). (4.7)
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Nevertheless, the rule is not sufficient to achieve our initial objectives since chronicles
might be used as constraints for the model. Consequently, it is necessary to represent
circumscription, which means that a chronicle recognition should induce the recogni-
tion of sub-events. For this purpose, a dual formula is necessary

∃t3, t4 Ch(AB, t1, t2) =⇒ OpSeq(A, B, t1, t3, t4, t2). (4.8)

The existential quantifier in Formula 4.8 is quite simple to understand, since a recog-
nition of a chronicle AB between t1 and t2 does not imply that all ground predicates
OpSeq under these times should be satisfied. However, this formula cannot be con-
sidered as a simple formula as, with MLN, it should be transformed into a formula
where all the ground predicates linked to the variables under the existential quanti-
fiers should be added to the formula with a ∨ operator. For instance, if t3, t4 ∈ {0, 1},
formula 4.8 should be rewritten:

Ch(AB, t1, t2) =⇒ OpSeq(A, B, t1, 0, 0, t2) ∨OpSeq(A, B, t1, 0, 1, t2)

∨ OpSeq(A, B, t1, 1, 0, t2) ∨OpSeq(A, B, t1, 1, 1, t2).
(4.9)

It immediately appears that such formulae will grow quadratically with the number of
values are which t2 and t3 range, but they seem difficult to avoid in order to represent
hard constraints with chronicle and logical circumscription.

4.1.4 Operator rules

We now address the definition of operators. Operator predicates have to encode the
temporal constraints presented in Section 1.2.4. They may almost be described in
the same way with a few exceptions, so we will detail one definition and provide
an oversight of the other, with additional information for a few particular operators.
Definition for all operators are detailled in Appendix A.

The sequence operator OpSeq may be described with the following formula:

Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ t2 < t3 ⇐⇒ OpSeq(c1, c2, t1, t2, t3, t4). (4.10)

It is important to remember that one of our goals is to be able to set a chronicle as an
evidence for the inference. To assert it, equivalences are necessary. Remember that an
MLN is expressed with a set of Horn’s clauses (cf. Section 3.1), thus Equation 4.10 will
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be represented as a set of four clauses :

Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ t2 < t3 =⇒ OpSeq(c1, c2, t1, t2, t3, t4).

OpSeq(c1, c2, t1, t2, t3, t4) =⇒ Ch(c1, t1, t2).

OpSeq(c1, c2, t1, t2, t3, t4) =⇒ Ch(c2, t3, t4).

OpSeq(c1, c2, t1, t2, t3, t4) =⇒ t2 < t3.

(4.11)

It is important to remember how MLNs are constructed since it has an impact on
the size of the model, on the inference, on the weight definition, and, obviously, on
computation time. The definition of an unary operator, like at most, shows almost
no difference since they may be described using a similar structure. For instance, the
operator OpAtMost is represented by the formula 4.12.

Ch(c, t1, t2) ∧ (t1 + δ < t2) ⇐⇒ OpAtMost(c, t1, t2, δ). (4.12)

We will just detail two particular operators that have a slightly different construc-
tion regarding other operators. The absence chronicle is an operator that relies on
another operator to be defined. It might be specified in other ways but the easiest
approach consists in using the during operator.

OpAbs(c1, c2, t1, t2, t3, t4) ⇐⇒ Ch(c1, t1, t4) ∧ ¬OpDur(c1, c2, t1, t2, t3, t4). (4.13)

With this definition operator OpAbs might be counter-intuitive since it only applies to
variables t1, t2, t3, t4 so it does not mean that no chronicle of type c2 might be found
between t1 and t4, but that no chronicle of type c2 appears at the times t2, t3. Expressing
that no chronicle of type c2 should appear between t1 and t2 is done when defining
a specific absence chronicle. For instance, assuming a chronicle AB, that represents a
sequence A to B, has already been defined, then the definition of chronicle ABnC, i.e.
a sequence AB without any event C between A and B, should be structured as follows:

∃t3, t4 OpAbs(AB, C, t1, t3, t4, t2) =⇒ Ch(ABnC, t1, t2).
Ch(ABnC, t1, t2) =⇒ OpAbs(AB, C, t1, t3, t4, t2).

(4.14)

Formula 4.14 defines the new type of chronicle ABnC based on an absence operator.
The definition is almost equivalent to formulae 4.7 and 4.8 defined for the sequence
operator but existential quantifiers are set differently. Note that for the absence, ex-
istential quantifier is not used on the same formula when defining a chronicle than
for other operators. The chronicle predicate might be entailed only if every ground
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predicate OpAbs are satisfied.
Another interesting operator to look at is the and operator. At first glance, defin-

ing an and operator should be easy as it is possible to use logic, but it is without
considering that beginning and ending of a chronicle should be clearly indicated. In-
deed, depending on the order of sub-chronicles, time boundaries from the chronicle
based on the and operator might be provided by the two sub-chronicles. For instance,
supposing a chronicle AandB, that is recognised when A and B are recognised, the
beginning time of the chronicle AandB might be the starting time of A or B as well,
depending on their own position in the data stream. Similarly, to the absence operator,
it is necessary to define intermediate operators to capture all possible orderings of
sub-chronicles. If we consider our chronicle example AandB and a recognition rAandB

of this chronicle, the starting time of this recognition, noted min(rAandB), depends on
two situations and defined as follows:

min(rAandB) = min(min(rA), min(rB)) (4.15)

This observation is equally true (mutatis mutandis) for the ending point of the recogni-
tion max(rAandB):

max(rAandB) = max(max(rA), max(rB)) (4.16)

These possible situations need to be represented by four intermediate operators that
are defined following formulae 4.17.

OpConj1(c1, c2, t1, t3, t4, t2) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t1 ≤ t3) ∧ (t4 ≤ t2)

OpConj2(c1, c2, t3, t1, t4, t2) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t3 < t1) ∧ (t4 ≤ t2)

OpConj3(c1, c2, t1, t3, t2, t4) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t1 ≤ t3) ∧ (t2 < t4)

OpConj4(c1, c2, t3, t1, t2, t4) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t3 < t1) ∧ (t2 < t4)
(4.17)

The names of these operators are completely arbitrary and the value i from OpConji
is only used to distinguish between them. Note that even if these rules are simple,
the order of the variable into an operator OpConji is chosen so as to assert that the
first time and last time (underlined in formula 4.17) are respectively the minimal and
maximal times of recognitions for the operator. This construction makes the final
OpConj predicate easier to define since it asserts that the recognition time boundaries
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are always at the same positions on every intermediate predicates.

OpConj1(c1, c2, t1, t3, t4, t2) ∨ · · · ∨ OpConj4(c1, c2, t1, t3, t4, t2)

=⇒ OpConj(c1, c2, t1, t2)
(4.18)

∃t3, t4 OpConj(c1, c2, t1, t2) =⇒
OpConj1(c1, c2, t1, t3, t4, t2) ∨ · · · ∨ OpConj4(c1, c2, t1, t3, t4, t2)

(4.19)

Note that predicate OpConj is defined directly with only two time variables. With this
construction, a chronicle based on an and operator might be defined straightforwardly:

OpConj(c1, c2, t1, t2) ⇐⇒ Ch(c1_and_c2, t1, t2). (4.20)

Inconsistent inference with the model In parallel with the definition of the chronicle
model, each of the operators was tested on small data streams containing four or five
LLEs to see whether rules followed our expectations. Furthermore, we tried to remove
some events from the data stream and provide chronicle as observation on our model
to see whether it was possible to reconstruct the data stream in a top-down approach.
From these small test cases, it appeared that inference with MC-SAT produces small
estimation errors on fully logical problems and even sometimes produced inconsisten-
cies or strange probabilities3. These inconsistencies do not require a complex program
to appears and only defining a chronicle with one or two operators applied on few
events is sufficient. From this point, we preferred investigate on the reasons of these
inconsistencies before trying to apply our model to a full study case.

4.1.5 Conclusion

In this first section, we defined our model and specific details to design our problem
with the Markov logic semantic. We presented in this section how chronicles and
operators are constructed and defined. With this construction, it would normally be
possible to represent uncertainty on a data stream and produce probabilities estima-
tions with soft constraints4 and high-level constraints. It may be not obvious, but all
rules presented in this section entail both recognitions and non-existing recognitions,
which is necessary if we aim at representing circumscription. In this section, we pro-
vide first insights on the relations between a formula and its representation in MLNs

3For instance, two LLEs that should have the same probability of apparition on the data have after
inference, asymmetrical probabilities.

4Formally, the LLEs in the data stream.
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and on the weight mechanism, but, in the next sections, we discuss these aspects in
deeper detail and more specifically the consequences that they may have on inference,
in order to explain the observed inconsistencies.

4.2 Specific logical structures leading to intractable problems
for WalkSAT

We presented, in the first section, the model that we designed to represent chronicles.
We expressed at the end of the section that inference with MLNs produced inconsistent
evaluations regarding our model and the problem designed to evaluate it. After fur-
ther investigation, we concluded that these inconsistencies were not due to a design
fault, but to structural problems leading SampleSAT, the sampler used by MC-SAT, to
perform bad sampling leading to erroneous estimates. In particular, we focus on the
original algorithm WalkSAT, core of SampleSAT, and its ability to solve specific logical
problems. Consequently, in this section, we detail further the experimentations that we
performed to investigate the matter. These experimentations do not use the chronicle
model expressed in Section 4.1, but focus on specific structures closely related to it.

4.2.1 A first example of unexpected behaviour with MC-SAT inference

As we explained in the previous section, inconsistencies appeared occasionally during
the design process of the chronicle model in MLN. They did not appear consistently
and might produced small variations (around 10 percent variations) on probability es-
timations. At first glance, these variations might be interpreted as possible errors from
sampling, but these errors might appear even on problems structured with no uncer-
tainty5. On such logical problems, if the inference produces a probability with a value
different from 1 or 0 (or extremely close), it means the sampler reached worlds that
does not satisfy the problem and return it as a valid sample. This is not unexpected
since WalkSAT and its weighted variations do not guarantee to find a solution due
to their local stochastic search approach. But performances of MLNs mostly rely on
WalkSAT performances so it would be interesting to assess the ability of WalkSAT to
reach a solution. To our knowledge, this observation is rarely seen across the literature,
which usually tends to focus on computation time.

Before introducing our approach to study WalkSAT reliability, we provide a really
small example of problem that produces inconsistencies to show that the issue is not

5All rules are hard and the data stream is completely provided.
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necessarily size related. Consider the following problem designed in Markov logic:

9 ¬A(t1, t2)

9 ¬B(t1)

A(t1, t2) =⇒ B(t1).
∃t2 B(t1) =⇒ A(t1, t2).

(4.21)

where t1, t2 ∈ {0, 1, 2}. Consequently, there are nine ground predicates A and three
B. The two first formulae are weighted and describe that, without any contradictory
deduction, predicates A and B should not be satisfied. Since the two last rules are hard
constrained, they should always been prioritised against the weighted rules. With no
evidence provided, the optimal solution consists in considering every ground predi-
cate as false since each hard constrained rules remains satisfied. In this case, probabil-
ity estimation is, as intended, 0 for every predicate. Now, consider the same problem,
but with the evidence that B(1) is satisfied: the third rule remains satisfied for any
ground predicates A(t1, t2), but the fourth rule enforces that A(1, 0)∨ A(1, 1)∨ A(1, 2)
must be satisfied6. This last formula might be asserted in seven configurations of truth
values and violated in one configuration (when each predicate is false). Due to the
first rule of Equation 4.21, assignments of value for ground predicates A should be
equiprobable. Figures 4.1a and 4.1b show the results of inference with Alchemy on
this problem using MC-SAT inference and belief propagation. The result of MC-SAT
is unexpected since it shows that A(1, 0) and A(1, 1) are never true in any possible
solution for this problem, which is obviously wrong: belief propagation, on the other
side, provides consistent results where all ground predicates A(1, t2) are equiprobable.
It is worth noting that results from MC-SAT can be changed in Alchemy if a different
seed is provided. For instance, seed 444 gives a 0 probability to every ground predicate
except A(1, 0).

Side notes on weight influence It may be surprising to see that belief propagation
estimates ground predicates A(1, t2) with a 0.33 . . . probability while it should have
3 configurations on 7 satisfying each of these ground predicates, which suggests it
should be approximately a 0.43 probability. Interestingly, probabilities for these pred-
icates are highly correlated to the weight ratio between the two first and the two

6Remember that, with MLNs, existential quantifiers are replaced with the disjunction of all ground
predicates impacted by the quantifiers. Consequently, fourth rule of Equation 4.21 might be rewritten
B(t1) =⇒ A(t1, 0) ∨ A(t1, 1) ∨ A(t1, 2). As B(1) is set as evidence, for t1 = 1, the fourth rule might be
simplified in: A(1, 0) ∨ A(1, 1) ∨ A(1, 2).
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(a) MC-SAT inference (b) Belief propagation inference

Figure 4.1: Inference result with Alchemy on the problem described in
Equation 4.21 with B(1) set as evidence. Initialised with seed 445. Left

side MC-SAT inference, right side Belief propagation.

last rules in Equation 4.21. Theoretically speaking, the ratio is close to zero since
weight of hard constraints is supposed to be infinite. In Alchemy, hard constraints
are just weighted formulae with a weight ten times bigger than the highest weight.
But, since the weight for predicates A is already quite big (usually weights are set
between [−1, 1]), having two predicates A(1, t2) set at true is less likely since it would
break more ground formulae. In this situation, the first rule, and more precisely its
weight, makes ground predicates mutually exclusive with a high enough weight. With
a smaller weight, probability estimates may change from 1 to 0.33. These variations
are plotted in Figure 4.2. This represents a good example of weight influence on log-
ical representations and its misleading effects since, in this case, weight have a direct
influence on a specificity, like mutual exclusivity, that would be intuitively represented
by a rule and not by the choice of a weight. Furthermore, it has been shown that the
choice of the weight is dependent of the size of ground network.

4.2.2 WalkSAT efficiency analysis on specific problems

In the state-of-the-art, inconsistencies observed during our experimentations have, ap-
parently, never been reported. This induces that the chronicle representation presents
particular properties sufficient to produce these errors on inference, and that these
properties are not present in the other approaches presented in Section 2.2. It is sim-
ple to extract few differences between our approaches and existing ones:

• Most of the approaches do not represent logical circumscription, meaning they
do not have to use equivalences between a CE and its sub-events (except [Ska+11]).
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Figure 4.2: Variations of probability estimates of ground predicates
A(1, t1) regarding the weigh for the first rule in Equation 4.21. For
practical reasons, hard constrained rules are defined as weighted rules

with weight 100.

Consequently, most problems might be usually represented as an acyclic oriented
graph (oriented respectively with the implications between events). Remember
that circumscription is necessary to be able to provide chronicle recognitions as
evidences for the inference.

• Another main difference from the chronicle representation and previous meth-
ods is that the latter are usually domain-specific. In [Ska+11] for instance, Event
calculus semantic is voluntarily reduced and adapted to reduce the overall size
of the network.

• Finally, even if it is not possible to present it as a difference, all the approaches
from the state-of-the-art seemed to be relatively small regarding the size of pred-
icates, clauses, and the number of levels of deduction. By levels of deduction,
we refer to the hierarchical semantic of rules. For instance, a chronicle may be
defined using sub-chronicles, themselves defined by other sub-chronicles, etc.
Usually, in literature, this number of hierarchical levels are rarely above four, but
for being able to define a realistic chronicle using the syntax defined previously,
it is almost certain that more than four levels would be necessary.

As presented in Section 3.1, the MC-SAT algorithm strongly relies on MaxWalk-
SAT. With MC-SAT, poor estimations result necessarily from a bad sampling which
is affected by two parameters (cf. Algorithm 2): the selection of clauses at each iter-
ation or the production of a sample x(i). Since experimentations were performed on
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problems with just hard constrained formulae (excepted for unary clauses represent-
ing the prior probability of LLEs without prior knowledge), all clauses are selected for
sampling, meaning that the reasons of inconsistencies are necessarily due to a poor
sampling produced by SampleSAT.

As previously detailed in Chapter 3, SampleSAT randomly chooses between a walk
step and a simulated annealing step. Note that for a problem designed mostly with
hard rules, the simulated annealing step does not have a great impact on computation.
Indeed, if the cost of a random neighbour assignment is better the current one, the
algorithm change to this assignment. This behaviour is mostly like WalkSAT when it
selects a clause that might have a better assignment. Otherwise, if there is no better
assignment, simulated annealing would most likely never change the current assign-
ment, since such modification may happen with a probability 1 − e∆cost/Temp, with
∆cost the cost between the two assignment relative to the weights provided by the
MLN and Temp a constant7. Since all grounded predicates are connected to hard con-
strained rules, such a change will most likely have a probability extremely close to 0.
For this reason, sample production mostly relies on MaxWalkSAT.

Linear chains To test MaxWalkSAT, we designed a set of experiments to evaluate if
one of the difference from the literature may be the reason of the results obtained with
chronicles. The first specificity from our approach might be the circumscription rep-
resentation. Existential quantifiers aside, circumscription might be represented with
equivalence, so the first experimentation is extremely simple and represent a chain of
deduction. Given N predicates xi, i ∈ 1, . . . , N the first scenario is designed as follows:

xi ⇐⇒ xi+1 | i ∈ 1, . . . , N − 1 (4.22)

and is compared with a second scenario designed only with implication:

x1 ∧ (xi =⇒ xi+1) | i ∈ 1, . . . , N − 1 (4.23)

In scenario described by Equation 4.23, predicate x1 is given as clauses to reduce the
number of solutions. Indeed, Equation 4.22 has two solutions were all the predicates
are assigned to the same value (true or false), while 4.23 has N solutions if the clause xi

is not provided and only one with it. It is necessary to reduce the number of solutions

7Among the literature on MLNs, the Temp parameter is never addressed. We suppose that in most
cases it is ignored or set to one.
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Figure 4.3: Flips necessary to find a satisfiable assignment for Equa-
tions 4.22 and 4.23 regarding the number of predicates.

since it is easier to reach a satisfiable assignment with a problem that has more solu-
tions. Figure 4.3 shows the average number of flips necessary to reach a solution on
both problems. In this case simple or equivalences seem to have no particular impact
on the computation, but note that this case is considered as a difficult 2-SAT problem
for WalkSAT [WS02]. Interestingly, this type of problem is considered as hard due to
the implications chaining structure.

Ternary chains 2-SAT instances are not usually studied8 in WalkSAT, but previous
works ([Pre05; WS02]) refer regularly to the 3-SAT version of chained implications
which might be simply described as follows:

x1 ∧ x2 ∧ (xi ∧ xi+1 =⇒ xi+2) | i ∈ 1, . . . , N − 2 (4.24)

Results for this problem are displayed in Figure 4.4. Some preliminary context is nec-
essary to make sense of these results. In the literature, influences of model parameters
on inference for solver (local search or not) are often analysed on random instances of
k-SAT problems. For instance, the most common one is the ratio α that measures the
proportion of clauses against the number of predicates. It has been shown in [HS05]
that this ratio may have a great influence on computation. This might not really apply
here since this influence on this ratio has been shown on random problems. Indeed for
a random problem, it has been shown that above 4.5, the probability that this problem
is unsatisfiable is almost one [HS05]. For Equation 4.24, it is guaranteed that a solution

8Algorithms like DPLL are linear for 2-SAT instances, so local search algorithm are tend to be less
studied for this kind of problem.
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Figure 4.4: Average number of flips used to find a assignment for Equa-
tion 4.24 with simple and double implications regarding the number of

predicates.

Problem Instance WalkSAT/SKC WalkSAT/TABU

uf200/hard 0.85 · 106 3.70 · 106

flat100/hard 192788 229496
par8-5-c 13345 8388
logistics.d 398277 332494
bw large.a 13505 7563
bw large.c 9.76 · 106 2.00 · 106

Table 4.2: Common benchmarks of 3-SAT problems tested for WalkSAT
inference. Source: [HS05], Chapter 6.

exists, so the α ratio is not important here. But, similarly, the choice of the probability
p that determines the choice between a random step or a local search step may modify
greatly the performances and it is generally set between 0.45 and 0.6. As reference,
[SAO05] applied WalkSAT on a random 3-SAT instances using different p values on
a random 3-SAT instance with N = 105. The authors showed that, with a probability
around 0.5, WalkSAT found a assignment in 10 · N with α below to 4. Note that with
the ternary chain from Equation 4.24, results with WalkSAT are worse since it finds an
assignment in 107 · N for N = 40. For a better perspective of WalkSAT performance,
Table 4.2 presents classical non-random benchmarks used traditionally by the SAT
community with the average number of flips required to find a satisfiable assignment.
These benchmarks range from 75 to 3 016 predicates. These results come from [HS05]
(Chapter 6) and display inference for two WalkSAT versions. The SKC version is the
same as Algorithm 1 in Section 3.1 while the TABU version is almost equivalent but
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prevents that successive flips happen on the same predicates. Independently of these
two versions, the ternary chains take far more iterations than 3-SAT random and clas-
sic hard 3-SAT problems of same dimensions. Interestingly, some other type of 3-SAT
instances have been reported to require an unusually high amount of flip to be solved
as the 3-XORSAT instances [GY11].

Simplified chronicles This ternary problem is an interesting cue to explain why the
chronicle representation seems to produce inconsistent results, but the ternary chains
and the chronicle representation are not totally similar, so we propose a simplistic
representation that is closer to the chronicle’s cases. Given a set of boolean variables
V = {x1

1, . . . , xj
i−j+1, . . . , xL

1} for j ∈ {1, . . . , L} and i ∈ {1, . . . , L− j + 1} , with L the
total number of layers, and given the set of clauses R = {c1, . . . , cn}, the problem is
designed as follows: F =

∧
ci∈R

ci and


(xj

i ∧ xj
i+1 =⇒ xj+1

i ) ∈ R
(xj+1

i =⇒ xj
i) ∈ R

(xj+1
i =⇒ xj

i+1) ∈ R
x1

i ∈ R

with

{
0 < j ≤ L;
0 < i ≤ L− j + 1

(4.25)

where j is the height of a predicates layer, i the position of a predicate on jth layer.
An example is provided in Figure 4.5 with a height of 3 and a base length of 5. We
sometimes use the terms higher predicate (respectively lower) and highest predicate
(resp. lowest) to describe the position of a predicate regarding the layers as they are
depicted in Figure 4.5. Consequently, the highest (resp. lowest) predicates are on the
layer L (resp. layer 1). Equivalently, we distinguish clauses regarding their direction
from a layer to another using the term ascending clauses (resp. descending) for clauses
describing a implication from a lower layer to a higher layer (resp. from a higher layer
to a lower layer). Note that this model might be represented without circumscription
if all the descending clauses are removed. Formula 4.25 does not completely capture the
chronicle representation but it captures the succession of deductions used to represent
a CE. The simplest way to see the proximity between the two models is to consider
the first layer of predicates x1

i as a succession of LLEs in the data-stream and the
upper layer as CEs. In reality, the number of predicates in the upper layers should
be higher since it should have a predicate for each combination of events on the same
layer . In this case, predicates are associated to two consecutive predicates from the
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Figure 4.5: A simplified chronicle representation with a height of 3 and
a base length of 5. Each arrow on the graph is clause representing an

implication between the corresponding predicates.
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Figure 4.6: Flips necessary to find a satisfiable assignment for Equa-
tion 4.25 where height of the structure is equal to its base length.

layer below, which makes the structure easy to represent graphically. Note that this
structure presents an equivalent chaining of implication as in Equation 4.24.

In order to show that the deduction chain length is an important factor on com-
putability, we set an experiment based on Equation 4.25 where the height of the struc-
ture is maximal for a particular base length. Consequently, the height of the structure
is always equals to its base length. This might be seen as a problem to recognise one
instance of a chronicle composed of L LLEs. Results (cf. Figure 4.6) show that this
kind of representation presents a behaviour similar to the ternary chains and becomes
quickly intractable with a small number of predicates. It appears from Figure 4.6a that
the height of the structure, and consequently the complexity of chronicle in terms of
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number of operators used, have an important impact on calculability. This partially
explains why models from the literature (cf Chapter 2) did not face erroneous results,
since they are mostly limited in terms of deduction levels and do not usually have
more than three or four. Note that inference has been tested on the same problem
without circumscription. Concretely, this representation is equivalent to Equation 4.25
with some slight changes that suppress the descending clauses:{

(xj
i ∧ xj

i+1 =⇒ xj+1
i ) ∈ R

x1
i ∈ R

with

{
0 < j ≤ L;
0 < i ≤ L− j + 1

(4.26)

It appears from Figure 4.5 that computations are faster without representing circum-
scription. This may be another explanation of the difference in results with the state-
of-the-art since many approaches do not represent circumscription, but we will show
that it should be carefully considered regarding the dimension of the problem and
more particularly the number of predicates per clauses.

Impact of k in k-SAT instance Usually in k-SAT random problem, the higher is k,
the longer the computation takes for an equivalent number of predicates [CLS15]. The
chronicle representation and its simplified version, nonetheless, are not technically
pure k-SAT instances since many clauses are just composed of two predicates. But it
may be interesting to measure the impact of long clauses (generally created by existen-
tial quantifiers) on the computation.

Equation 4.27 is the generalised version of Equation 4.25 adapted for any k-clauses.
The general structure is basically the same, except that the ascending clauses are com-
posed of k predicates.

(xj−1
i ∧ · · · ∧ xj−1

i+k−2 =⇒ xj
i) ∈ R

(xj
i =⇒ xj−1

i ) ∈ R
...
(xj

i =⇒ xj−1
i+k−2) ∈ R

with

{
1 < j ≤ L;
0 < i ≤ (k− 2) · (L− j) + 1

{
x1

i ∈ R with
{

0 < i ≤ (k− 2) · (L− 1) + 1

(4.27)

For instance, a 4-SAT version of this structure with three layers is presented in Fig-
ure 4.7. Performance of WalkSAT on different k-SAT instances of this model are dis-



112 Chapter 4. Chronicle representation with uncertainty using Markov logic networks

x1
1 x1

2 x1
3 x1

4 x1
5

x2
1 x2

2 x2
3

x3
1

Figure 4.7: Graphical representation of Equation 4.27 with L = 3 and
k = 4.

played in Figure 4.8. Experimentations have been done with and without circumscrip-
tion representation. Surprisingly, it appears that when circumscription is represented,
the number of iterations to solve a problem drastically decreases (at constant number
of predicates) when k increases, which seem to imply that with k high enough the
clauses composed of two predicates help with the computation. But, for the 4-SAT ver-
sions, both have the same performances, and for the 3-SAT versions the representation
without circumscription is faster than the one with it. This is an important informa-
tion since the operators, as they are defined in the chronicle representation with MLNs,
are mostly composed of three predicates and time constraints. Since time constraints
might be evaluated when the network is grounded, they do not count as predicates,
meaning that all the binary operators are clauses with three predicates, which is, as re-
ported in Figure 4.8a, one of the worst k-SAT instantiations for computation efficiency.

Complexity of evidences In this section, all the experimentations focused on the
propagations of evidences through a logical problem while using WalkSAT, but in ev-
eryone of them the evidences were considered to be provided through “lowest” pred-
icates. But, remember that, for the chronicle representation, it should be possible to
provide evidences as CEs, which means the highest predicates (aka the more complex
in term of dependencies) in the previous models. Note that, regarding Equation 4.27,
if clauses x1

i ∈ R are replaced by the clauses xL
i the solution of the model is the same

with all the predicates to be evaluated as true. Figure 4.9 displays the amount of flips
necessary in average to reach a solution when the evidence is provided with the high-
est predicates. These results should be compared to Figures 4.8a and 4.8c. It appears
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Figure 4.8: Flips necessary to reach a solution regarding the value k in
Equation 4.27.
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Figure 4.9: Flips necessary to reach a solution regarding the value k in
Equation 4.27 when evidences is provided with xL

1 (highest predicate).

that this type of evidence does not benefit from the descending clauses, especially for
structure with a high k. Obviously, it has not been tested on the model without cir-
cumscription since it the lack of descending clauses makes it impossible to propagate
truth values when evidence is provided on the highest predicates.

Evidences values Another interesting parameter to evaluate is the propagation of
truth value among predicates regarding the values of evidences. Indeed, until now, it
has always been considered that the evidences to propagate were true values, but in
fact, nothing guarantee that propagation of a false value is equivalent. For this last
experiment, the evidences are just considered to be false values, which, in terms of
chronicles, might be interpreted as no observation of an event at a given time. Such a
model is equivalent to Equation 4.27 with unary clauses replaced by their negation:{

(xj
i ∧ xj

i+1 =⇒ xj+1
i ) ∈ R

¬x1
i ∈ R

with

{
0 < j ≤ L;
0 < i ≤ L− j + 1

(4.28)

The results of inference are displayed in Figure 4.10 for the 3-SAT structure. Other
k-SAT structures are not presented but have a similar behaviour. It appears that prop-
agation of truth values along the structure is not balanced between true and false
evidences. It may seem unimportant, but remember that for the chronicle representa-
tion LLEs are supposed to be uncertain (cf. Section 4.1.2), so the truth values of LLEs
are supposed to be unknown. Consequently, if WalkSAT is trying to find a solution,
it is more likely to find an assignment with zeros for predicates on higher layers. To
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Figure 4.10: Flips necessary to reach a solution regarding the truth value
of evidences.

Layers 10 11 12 13 14 15 16 17 18

Ratio 0.263 0.229 0.199 0.173 0.138 0.119 0.096 0.075 0.066

Table 4.3: Ratio of true assignments for Equation 4.29.

assert this, we modified Equation 4.25 slightly:
(xj

i ∧ xj
i+1 =⇒ xj+1

i ) ∈ R
(xj+1

i =⇒ xj
i) ∈ R

(xj+1
i =⇒ xj

i+1) ∈ R
x1

i ⇐⇒ xL
1 ∈ R

with

{
0 < j ≤ L;
0 < i ≤ L− j + 1

(4.29)

Unary clauses have been replaced by double implications between the highest predi-
cate and the lowest predicates of the structure. With this set up, only two assignments
for the predicates are possible: all false or all true. Table 4.3 presents the ratio of true
assignments for this model regarding the number of layers L where it appears clearly
that truth assignment of value is unbalanced.

4.3 Consequences of WalkSAT inference on the chronicle model
for MLNs

As we already discussed and showed in Chapter 3, the WalkSAT algorithm is the main
core of the inference computation. Since MC-SAT is a simple Monte-Carlo approach,
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its efficiency and performance rely exclusively on the quality of the sampling. In the
previous section, we showed that SampleSAT, the algorithm used for producing the
samples, might be reduced to WalkSAT since simulated annealing steps may not reach
a worse truth assignment due to the presence of hard clauses that mostly prevents
simulated annealing to reach a distant solution. This point should not be left out since
the main goal of simulated annealing in SampleSAT is not to reach solutions of the
logical problem9, but to produce small random perturbations that allows WalkSAT
to reach solutions with similar cost, but fundamentally distant in term of variables
assignment [WES04]. Solutions are supposed to be found quasi uniformly, which is
necessary for MC-SAT (cf. Algorithm 2, Section 3.1). Unfortunately, SampleSAT has
been mostly tested on random 3-SAT instances, which does not assure that a spe-
cific problem might not be troublesome. Chronicle representation, as we showed, is
structurally one of these troublesome problems. Consequently, if WalkSAT produces
non-uniform samples, SampleSAT will not improve them. And, regarding our exper-
iments, WalkSAT generates samples that might be strongly unbalanced regarding the
overall shape of the chronicle. Nonetheless, simulated annealing steps on sample-SAT
depend on two parameters when trying to reach a assignment that does not improve
the cost: the cost and a fix value Temp. As explain in Section 3.1, such change might be
performed with a probability e−∆cost/Temp, so it should be theoretically possible to set
the Temp parameter high enough to counteract the cost of hard clauses10, for instance
by setting Temp = max(∆cost) between every couple of assignment with a distance
1. Among the literature on MLNs, settings for SampleSAT are not given and it seems
that, in Alchemy, Temp is set to 1. Putting Temp = max(∆cost) has not been tested so
the possible effects are unknown, however applying such an approach might produce
side effects, since simulated annealing would consequently always flip a predicate that
is only connected to weighted clauses.

Sampling uniformity left aside, our experiments show that the inference process
might be quite expensive for a structure like the chronicle representation. This is
especially true for the propagation of true evidences as LLEs and CEs as well. We
did not provide times since they are really dependent of the computer configuration,
but, for instance, our experiments were performed on a computer with 16 Go of RAM
and a 3.50GHz four core processor11. Computing a result taking at least 107 iterations
is approximately done in more than 1s, while a result with 108 iterations is usually

9It has been shown that simulated annealing is inefficient for solving SAT problems alone [SKC+93].
10Remember that in practice, weight for hard clauses is not infinite, but defined at ahigh enough value

to be largely bigger that any other weight
11In practice, only one core is used.
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performed in more than 20s. These times might seem short, but remember that only
short structures were presented that are far from a realistic application. Remember
also that WalkSAT is used here as a sampler, and thus is necessarily called many
times. In Alchemy, by default, the inference process requires 1 000 calls to MaxWalkSAT,
which means that for a problem solved, in average, in 20s with MaxWalkSAT, it would
require for the MC-SAT algorithm more than 5 hours of computation to provide an
estimation. For example, an instance of Equation 4.25 with L = 20, which is 210
predicates, would be solved in more than 1 000s. Note that many optimisations were
proposed to reduce the inference time like eliminations of predicates not required
by a query12 or variations of WalkSAT like TABU13, but none of these optimisations
seem efficient enough to counteract the observed effects. Indeed, exponential growth
has to be considered, which means that slightly larger structures would be quickly
intractable.

4.4 Conclusion

In this chapter, we presented our work to represent chronicles into the Markov logic
formalism. Even if these formulae are generally simple, we showed that Markov logic
semantic might be sometimes inadequate to represent specific rules or properties.

Prior results on this representation showed inconsistency produced by inference
with MC-SAT. We provide a small example showing that MC-SAT might produces
inconsistencies even on the simplest problem. Based on this problem, we discussed
briefly the ability of MLNs to represent logic construction, and particularly how the
choice of weights may impact a representation. We did not develop it further since
it has already been expressed in [Jai11], where it is recommended to use Markov
logic to construct Markov networks, but not as an extension of logic for probabilistic
representations. Jain showed that weights have a big influence on the representation,
but furthermore, that the impact of weights is highly correlated to the size of the
network. Consequently, weight importance might change regarding the number of
grounding predicates and clauses, meaning weights should be adjusted regarding the
resultant network build from the model in Markov logic. Even for a model like the

12Predicate eliminations are really efficient to reduce the size of a network, but we showed that even
small instance of a problem might be troublesome and, furthermore, it is difficult to remove a predicate
in a CEP context since all events are connected together.

13TABU inference has not been fully tested here, but it seems that while it might produce slightly better
results for the chronicle structure or the ternary chain, this is still not sufficient regarding the size of the
problem.
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chronicle representation that does not use so much weighted formulae, except for
representing uncertainty for the data-stream, it would imply that a modification of the
data-stream (e.g. its length) would impact the marginal probabilities of LLEs, even if
weights are learned, which is not acceptable for online use.

In a second time, we present our experiment on the core algorithm for inference,
i.e. WalkSAT. We showed that the overall design for the chronicle representation rises
unexpected problems for inference with this algorithm and impacts directly the com-
putation speed and the uniformity of samples produce which results in inconsistencies
for MLN inference. Such problems have too many consequences for inference on the
chronicle representation, which lead us to think that MLNs should not be used for our
case and our goals.

Since a probabilistic approach based on sampling and local search algorithm is inef-
ficient, it might be relevant to try other approaches from the spectrum of the SAT com-
munity based on exploratory techniques (like CDCL). For such an approach, ProbLog
is an interesting method that combines logic representation with probabilities (cf. Sec-
tion 3.2). In the next chapter, we present our work to represent chronicles with the
ProbLog formalism.
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I
n the previous chapter, we showed that MLNs were not suitable to represent
chronicles due to their FOL structure. Since the main issue seems resulting
from the sampling approach produced by a local search satisfiability algo-

rithm, it may be beneficial to use exploratory approaches like BDD that store all the
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possible solutions, but benefit of strong optimisation techniques provided by the SAT
community. Such approaches were used in literature for CEP problems under uncer-
tainty, but are not so common. Dimensionality may potentially be problematic for this
kind of method because of the exploratory search that tends, in many applications, to
face combinatory explosion of possible worlds regarding the size of logical problems.
Nonetheless, they seem to provide fast computation for reasonably sized problems
and exact computation regarding the defined model since every solution explaining a
situation is explored and evaluated with regard to the probability provided.

In the literature, one method [MD11] is based on the Markov logic semantic to
construct the network used for latter inference, but since we saw, in the previous chap-
ter, that this formalism produces counter-intuitive representation due to weight and
rules structures, we preferred to try an approach based on ProbLog used in [Ska+15b].
Indeed, even if Markov logics and ProbLog semantics look quite similar, they do not
compute uncertainty the same way. Furthermore, ProbLog uncertainty representation
describes directly rules probabilities without using a weight system, which is more
convenient for designing the model.

In Section 5.1, we detail conceptual differences between Markov logic and ProbLog
semantics, since, even if they are quite close, the interpretation for fomulae that look
identical are quite distinct. Section 5.2 presents details about the chronicle represen-
tation using ProbLog and Section 5.3 applied it on two models: a toy-example rep-
resenting a hurricane alarm and a representation of the drone model presented in
Section 1.3.

5.1 Difference in semantic interpretation with Markov logic
networks

Before presenting the chronicle model, we want to address a particularity between
the interpretation of the semantic for ProbLog and Markov logic. Intuitively, one
might think they are equivalent since they both represent clauses. Nevertheless, the
probability associated to a clause is not exactly applied with the same meaning.

With MLNs, a weight on a clause indicates its confidence on the knowledge base
and, consequently, how often it should be satisfied. This simple implication a =⇒ b
might be satisfied with three value configurations equally probable if not specified
otherwise [{a : true, b : true}, {a : f alse, b : true}, {a : f alse, b : f alse}]. If this is the
only formula in the knowledge base and it is hard, a and b are true respectively with
1
3 and 2

3 probability.
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0.5::a(1).
0.5::b(1).
0.5::c(1).
a(X):-b(X),c(X).

0 A
0 B
0 C
B ^ C => A.

5.1: A simple example for semantic interpretation. Both codes represent
the same program. Left code is Problog semantic. Right code is Markov

logic semantic.

In contrast, in ProbLog, the probability attached expressed the chance that the
head of the clause is proven if and only if conditions in the body are satisfied1. More
specifically, a clause 0.7:: b(X):- a(X). does not mean it should be satisfied in 70%
of worlds, but that if a(X) is proven, b(X) is proven with 0.7 probability2. Reciprocally,
if b(X) is an evidence in the program, and without other formulae, a(X) have to be
proven too, independently of the 0.7 probability.

As a matter of example, we provide a basic program 5.1, written in ProbLog and
Markov logic, that describes a implication between three predicates a(X), b(X) and
c(X). For each predicate, an unary clause is defined with a given probability. Readers
may be confused with the zero weight in the Markov logic semantic, but they should
remember it does not represent a probability but a weight where zero represents, in
this case, a 0.5 probability. The implication formula is set as a hard constraint.

Even if these two codes may represent the same formulae, they do not represent
the same program. In table 5.1, we provided the inference results given by the two
codes. To understand these differences, we will now explain how these probabilities
are computed for the case where b(1) or ¬b(1) are set as evidence. When the evidence
is b(1) (or B for MLNs), ProbLog supposes b(1) to be proven, c(1) might only be proven
by its unary clause, while a(1) might be proven both by its unary clause and by the
implication. Two situations may arise. First, a(1) is proven by its unary clause (without
regard if it is proven by the implication) which has a 50% chance. Second possibility,
a(1) is not proven by the unary clause, which happens with an independent probability
0.5, but by the implication which supposes c(1) to be proven, which happen with a
probability 0.5. In this second case, the probability is the product of this two facts,
consequently 0.25. The full probability for a(1) to be proven is the summation of the
probabilities of this two scenarii, consequently 0.75.

1This is true only if the head might be proven only by one clause. If the head might be proven by
other clauses, to be proven it requires that at least one body among the clauses is proven.

2In this case, the formula is equivalent to P(b(X)|a(X)), but it would not be the case if b(X) might be
proven by another clause.
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Evidence ProbLog MLN

a(1) b(1) c(1) a(1) b(1) c(1)

a(1) 1 0.6 0.6 1 0.5 0.5
¬a(1) 0 0.3̄ 0.3̄ 0 0.3̄ 0.3̄
b(1) 0.75 1 0.5 0.6̄ 1 0.3̄
¬b(1) 0.5 0 0.5 0.5 0 0.5

Table 5.1: Inference results with ProbLog and MLN with different evi-
dences.

With Markov logic, the only restriction is the implication B, C =⇒ A to be sat-
isfied. Since B is satisfied, the implication may be rewritten C =⇒ A. Only three
assignments of truth values assert it: [{A : true, C : true}, {A : true, C : f alse}, {A :
f alse, C : f alse}] where A is true in two assignments which gives the 0.6̄ probability.
This probability would change if unary clause weights for A and C were not the same
as it would balance differently the probabilities of the three assignments.

For the case where ¬b(1) is set as evidence, results are the same for both program
but the underlying logic and computation remain quite different. For ProbLog, since
b(1) is not proven, a(1) may not be proven by the implication, but just by the unary
clause. With Markov logic, implication is satisfied so A and C are free from all con-
straints and have therefore 0.5 probabilty to be satisfied. Furthermore, readers may
note that changing the weight for C in the MLN code would modify probabilities of
A, while changing the probability of the unary clause of c(1) would have no impact
on the a(1) probability.

ProbLog for chronicles The semantic used by ProbLog is quite convenient since it
represents implicitly circumscription that is necessary for our approach and would be,
consequently, much easier to provide in the chronicle model. Furthermore, the prob-
ability associated to rules that represents a conditional probabilistic relation between
predicates from the condition and the head is independent of other rules where, at con-
trary, with MLNs, the importance of a weight is always relative to the other weights
and formulae. But it is sill possible to represent dependencies since, in ProbLog, two
rules with the same head are not independent any more. This formalism allows a
great expressiveness for representing specific relations and, in particular, it allows an
easier way to describe the rules previously expressed with existential quantifiers in
MLNs.
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5.2 A chronicle representation with ProbLog

Despite the difference presented, the chronicle representation based on ProbLog looks
relatively similar from the MLN representation. In general, ProbLog semantic allows
some simplifications that we present here. Note that in this chapter, we use the nota-
tion convention from ProbLog where predicates and constants start with a lower case
letter, while variables start with an upper case letter. Since rules in ProbLog do not
express implications, we will use the symbol ⊢ to separate head and body in a rule in a
prolog semantic way. In the body, predicates are in conjunction and comma separated.
Probability of a rule is written in front of it, separated with ::. Without probability, the
rule has probability 1. For instance

p :: a(X, Y) ⊢ b(X), c(Y) (5.1)

represents a rule where the head a(X) is deduced from the body b(X), c(Y) with
probability p when it is satisfied.

5.2.1 Event uncertainty

Remember that event uncertainty, and more precisely LLEs uncertainty, might be a loss
of information that consequently does not appear in the data stream, or, at contrary, a
noise introduced that might append randomly. This two types of uncertainty might be
easily represented with ProbLog. To do so, LLEs and simple activities are separated
in two predicates, respectively ev(E, T) and act(E, T), with E the type of the event
and T the recognition time. ev predicates represent the information provided by the
data stream and might be erroneous and act predicates the hidden states of the simple
activity. Time is supposed to be discrete and, given a domain of instants T and a
domain of LLE types E , truth values of every predicate ev(E, T) for E ∈ E and T ∈ T
should be provided. Consequently, loss and noisy uncertainties might be represented
as follows:

p1 :: ev(E, T) ⊢ act(E, T) (5.2)

p2 :: ev(E, T) ⊢ ¬act(E, T) (5.3)

p3 :: act(E, T) (5.4)

Equation 5.2 represents the loss uncertainty with p1 the probability that an activity
has been correctly recognized so its corresponding event appears in the data stream.
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Reciprocally, 1− p1 is the probability that activity did not produce any event in the
data-stream. Equation 5.3 represents the noise uncertainty with p2 the probability
that, even without any activity, an event is recognised in the data-stream. Note that
for Equation 5.2 the probability describes the normal scenario while in Equation 5.3
the probability describes the erroneous scenario. This representation is quite classic
with PGMs since the predicate ev might be seen as an observation of a hidden state of
the model represented by the predicate act. Equation 5.4 has been declared since the
prior probability of predicates act might necessarily be provided. This representation
assumes independence between activities, but dependencies with previous rules or
more complex relations might be easily defined.

As for MLNs, transformation from a LLE to a chronicle is straightforward, never-
theless it should be defined from the predicate atc and not ev since atc is supposed to
represent the real state of an activity.

ch(E, T, T) ⊢ act(E, T) (5.5)

ch predicate represents a chronicle where the first parameter is its type and the two
last are the times when start and finish the recognition.

5.2.2 Chronicle representation

The chronicle model with ProbLog is quite similar with MLNs, but existential qual-
ifiers are not necessary any more thanks to circumscription. Consequently, it is not
required to pass by an intermediate predicate representing the relation between two
recognitions. For instance, a chronicle ab, sequence of two chronicles a and b, would
be represented as follows :

seq(T1, T2, T3, T4) ⊢ T1 ≤ T2, T2 < T3, T3 ≤ T4.
ch(ab, T1, T4) ⊢ ch(a, T1, T2), ch(b, T3, T4), seq(T1, T2, T3, T4).

(5.6)

with T1, T2, T3, T4 ∈ T . The seq predicate is in fact not necessary and might be rep-
resented directly with the definition of the chronicle, but this presentation is more
comprehensible. If compared with the definition of chronicle in Chapter 1, note that it
is required to define the limit constraints of chronicles like T1 ≤ T2. This was specified
with MLNs in a single constraining formula, but impossible to define in ProbLog so
each rule should assert the times ordering of sub-chronicles.

Other relations might be defined equivalently, but note that with this representa-
tion, predicate ch is in fact not mandatory since its type might be directly represented
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as a predicate. For instance, Equation 5.6 might be represented as well:

ab(T1, T4) ⊢ a(T1, T2), b(T3, T4), seq(T1, T2, T3, T4). (5.7)

Using the ch predicate has been preferred since it permits easier representation of
absence and and operator that we briefly review.

For the absence, it is still necessary to pass by an intermediate predicate. So a
possible definition of the absence predicate abs would be:

during(T1, T2, T3, T4) ⊢ T1 < T2, T2 ≤ T3, T3 < T4.
dur(C, T1, T4) ⊢ ch(C, T2, T3), during(T1, T2, T3, T4).
abs(C, T1, T4) ⊢ ¬dur(C, T1, T4).

(5.8)

Contrary to the other operators, abs predicate has an attribute C representing the type
of the chronicle. As for the sequence operator seq, it seems more convenient for defin-
ing chronicle based on absence with this construction of abs. For instance, defining
a chronicle ab_not_c that asserts that no chronicle c appears between a sequence of a
chronicle a and a chronicle b named ab would be defined as follows:

ch(ab_not_c, T1, T4) ⊢ ch(ab, T1, T4), abs(c, T1, T4). (5.9)

Without using a ch operator, it would be necessary to create an intermediate predicate
each time an absence chronicle is defined. The ch operator allows, to some extent, a
generic specification.

Equivalently, the and operator is defined using the same approach and, as for
MLNs, uses intermediate predicates to process the possible combination of chroni-
cle arrangements.Equation 5.10 presents the definition of these intermediate operators.

and1(T1, T2, T3, T4) ⊢ T1 ≤ T2, T3 ≤ T4, T1 < T3, T2 < T4.
and2(T1, T2, T3, T4) ⊢ T1 ≤ T2, T2 ≤ T3, T3 ≤ T4.
and(C1, C2, T1, T4) ⊢ ch(C1, T1, T2), ch(C2, T3, T4), and1(T1, T2, T3, T4).
and(C1, C2, T1, T4) ⊢ ch(C2, T1, T2), ch(C1, T3, T4), and1(T1, T2, T3, T4), C1 ̸= C2.
and(C1, C2, T1, T4) ⊢ ch(C1, T2, T3), ch(C2, T1, T4), and2(T1, T2, T3, T4).
and(C1, C2, T1, T4) ⊢ ch(C2, T2, T3), ch(C1, T1, T4), and2(T1, T2, T3, T4), C1 ̸= C2.

(5.10)
where each andi represents a different set of time arrangements then used to define
the operator and. It is important that the rules used to define and do not cover twice



126 Chapter 5. Exact computation of uncertainty for chronicles using ProbLog

the same arrangement. Without asserting that the and rules are mutually exclusive,
computation of probability would count the same recognition multiple time. For the
same reasons, second and fourth rules for the and predicates assert that C1 and C2

are equals. Indeed, these rules are required to assert that a chronicle C1&C2 produces
the same recognition as C2&C1, but if C1 = C2, and rules would capture two times
each valid recognition. For instance, consider a stream φ = [⟨a, 1⟩, ⟨c, 2⟩, ⟨b, 3⟩] and
two chronicles ab and ac that recognise respectively a sequence of LLEs a then b and
a sequence of LLEs a then c. If an and chronicle is defined with these two chroni-
cles and(ab, ac, T1, T4), it should produce the same results as and(ac, ab, T1, T4). If the
chronicle is defined using the definition and(ab, ac, T1, T4), recognition is produced by
the fourth rule of predicate and, whereas using definition and(ac, ab, T1, T4) would pro-
duce a recognition by means of the third rule. Now supposing a new and chronicle
defined and(ab, ab, T1, T4) for a stream φ′ = [⟨a, 1⟩, ⟨b, 2⟩, ⟨b, 3⟩], only two recognition
should be produced, but, without the condition C1 ̸= C2, third and fourth rules would
both be satisfied and would, consequently, produce all together four recognition and
change the probability calculation.

5.2.3 Conclusion

In this section, we briefly presented our chronicle representation based on ProbLog.
Although there are some subtleties, the chronicle representation with ProbLog is rel-
atively close to the Markov logic one, but lighten the rules and the overall represen-
tation while providing a more comprehensible model for probabilities representation,
dependencies and calculation. Since prior tests were encouraging, we applied it on
two models to estimate its robustness against dimension.

5.3 Instantiation of models under uncertainty using the ProbLog
chronicle model

In this section, we present two models on which we applied the chronicle represen-
tation. We will show that ProbLog, even if it performs indubitably better than the
MLN representation, quickly faces combinatorial explosion. Nonetheless, these mod-
els will be valuable in the next chapter, since ProbLog provides exact computation of
probabilities with respect to the model, they can be used to assert future results.
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Figure 5.1: Hurricane alarm model and transition probabilities

5.3.1 The hurricane model

The first model represent a hurricane alarm. This alarm is supposed to activate when
a sensor detects a hurricane. Unfortunately, the sensor is not fully reliable and may
produce inconsistent observations. For instance, it may detect a hurricane during calm
weather or, alternatively, not detect a real hurricane. We suppose this model to follow
the Markov property:

P
(

Xn+1 = j | X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i
)
= P (Xn+1 = j | Xn = i)

(5.11)
Figure 5.1 presents the model represented as a HMM. Probabilities of transition are
displayed on edges. The full system is separated into two sub-systems representing
the weather and the alarm. Top automaton represents the evolution of the weather
from Calm to Hurricane. Chance of transition depends on nothing else than the current
state. The bottom automaton represents the states of the alarm. Probabilities of state
changes are conditioned by the current alarm and weather states. Concretely, state of
the weather is the hidden variable of our model while the alarm state corresponds to
the observation. So, contrarily to Equation 5.4, hidden activities are not provided with
a prior probability, but are dependent of a Markov process.

To represent this model in ProbLog, we specified two predicates state and trans:

• The predicate state(M, T, S) represents the state S of the given sub-system M at
time T. For instance, state(weather, 4, calm) indicates that the weather is calm at
time 4.
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• The predicate trans(M, T, S1, S2) represents the probability transitions from a
state to the other modelised by the edges in Figure 5.1. M defined the sub-
system for the transition, T represents the time when the transition is fired, S1

and S2 are respectively the current state and the state at time T + 1. For instance,
trans(alarm, 3, on, off ) indicates that at times 3 the alarm was on state on and
switched to state off for T = 4.

The change of state rule may be defined easily with these predicates.

state(M, T, S2) ⊢ trans(M, T′, S1, S2), state(M, T′, S1), T′ + 1 = T. (5.12)

that simply expresses that a change of state from S1 to S2 for the sub-system M requires
that a transition exists between these two states and that the current state is S1. From
now, each transition has to be defined with respect to the Markov chain. Transitions
for the weather sub-system are represented as follows:

0.1 :: trans(weather, T1, calm, hurricane); 0.9 :: trans(weather, T1, calm, calm).
0.3 :: trans(weather, T1, hurricane, hurricane); 0.7 :: trans(weather, T1, hurricane, calm).

(5.13)
The semantic used is specific to ProbLog and allows to declare the prior probability
of predicates that should be mutually exclusive. Mutually exclusive predicates are
separated by a semicolon.

Definition for the alarm sub-system is similar, but consider specific conditions like
the state of the weather. The transitions for the alarm are defined as follows:

0.4 :: trans(alarm, T1, off , on); 0.6 :: trans(alarm, T1, off , off )
⊢ state(weather, T2, calm), T1 = T2 + 1.

0.8 :: trans(alarm, T1, off , on); 0.2 :: trans(alarm, T1, off , off )
⊢ state(weather, T2, hurricane), T1 = T2 + 1.

0.1 :: trans(alarm, T1, on, on); 0.9 :: trans(alarm, T1, on, off )
⊢ state(weather, T2, calm), T1 = T2 + 1.

0.99 :: trans(alarm, T1, on, on); 0.01 :: trans(alarm, T1, on, off )
⊢ state(weather, T2, hurricane), T1 = T2 + 1.

(5.14)

Each rule is conditioned by the previous state of the weather. Mutual exclusivity is
used in these rules too. So, for instance, the first rule describes that, from the state off
in the alarm sub-system, a transition may be fired to the state on with probability 0.4 or
stays in state off with probability 0.6 if, at the current, time weather is calm. Checking
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the current state of the alarm is unnecessary since the condition is already required in
Equation 5.12. Finally, the full system needs to include the starting states of the HMM:

state(weather, 0, calm).
state(alarm, 0, off ).

(5.15)

meaning that the system starts on a calm weather and with the alarm off.

Chronicle definition Chronicles may be defined easily on top of it, using the se-
mantic provided in Section 5.2 and considering the alarm states as our LLEs and the
weather states as our activity. So, as explained in the previous Section 5.2, chronicles
are defined on the hidden states and not the LLEs.

Suppose we want to define the following chronicle

((hurricane hurricane)− [calm]) equals ((off off )− [on]) (5.16)

that represents a succession of time during which a hurricane was active but the alarm
did not activate. This chronicle might be defined in the model with the following rules:

ch(seqHurricane, T1, T2) : − ch(hurricane, T1, T1), ch(hurricane, T2, T2)

, seq(T1, T1, T2, T2).
ch(seqHNoCalm, T1, T2) : − ch(seqHurricane, T1, T2), abs(calm, T1, T2).

ch(seqO f f , T1, T2) : − ch(off , T1, T1), ch(off , T2, T2)

, seq(T1, T1, T2, T2).
ch(seqO f f NoOn, T1, T2) : − ch(seqO f f , T1, T2), abs(on, T1, T2).

ch(chQuery, T1, T2) : − ch(seqO f f NoOn, T1, T2), ch(seqHNoCalm, T1, T2).
(5.17)

Each rule describes the definition of an operator used in Equation 5.16. So seqHurricane
defines the sub-chronicle (hurricane hurricane), seHNoCalm describes the sub-chronicle
(hurricane hurricane)− [calm], etc. until the final definition of chQuery representing
the full query.

For instance, given a stream φ1 = [⟨off , 0⟩, ⟨off , 1⟩, ⟨off , 2⟩, ⟨off , 3⟩, ⟨off , 4⟩] and set
the chronicle chQuery as query for the inference would return the probabilities in
Figure 5.2a.

Each answer provides the probability that the query appear on a precise interval.
The last line is a chronicle chQuery_dur computing the probability that the chQuery
appears at least once in the data-stream. Obviously, it should not be the summation of
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(a) Inference with φ1 as evidence (b) Inference with φ2 as evidence (c) Inference with φ1 and a
chronicle as evidences

Figure 5.2: Results for the query defined in Equation 5.16.

all the probabilities provided since the chronicle chQuery might be recognised more
than one time per stream. Furthermore, it is possible to infer the probability even
with partial data-stream. For instance probabilities inferred with the following stream
φ2 = [⟨off , 0⟩, ⟨off , 4⟩] are provided in Figure 5.2b.

Finally, it is possible to infer with a chronicle set as evidence. For instance, given a
chronicle hurricane during (off off ) that expressed that at least one hurricane appears
between two instants where the alarm was off and defined as evidence between time
1 and 4 the inference would provide the probability in Figure 5.2c.

Unfortunately, the computation time remains quite high and, paradoxically, pro-
viding evidences slows down computation. Without any evidence, the problem is
intractable above fifteen units of time using the SDD structure3.

5.3.2 The drone model

The second model implemented is the drone model presented in Section 1.3. The
representation in ProbLog is, in fact, quite similar to its initial specification, but with
small variations. The model is decomposed in autonomous sub-systems like for the
hurricane model, for instance RPS TC or ATC service sub-systems. Sub-systems may
influence each other in two different ways. Like for the hurricane model, state change
of sub-system may be activated regarding the state of another sub-system, but it might
be activated by an action produced during a change of state of another sub-system.
For instance, when the RPS detects a telecommand loss, it should contact the ATC
making the ATC System to change its current state. Furthermore, states may change
when a period has elapsed. For instance, in the RPS TC sub-system, the state changes
from quick recovery to long recovery when ZZ minutes elapsed. In our model time is
discretised and should be represented in a number of instant. For short, change of
state may be conditioned by state, transitions taken by sub-systems, and time.

3BDD and d-DNNF produce worse results.
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Figure 5.3: Sub-systems for the voice and telecommand failures.

This representation reveals a problem that was not initially mentioned since, at a
given time, a sub-system may receive conflicting choices. For instance, the sub-system
RPS TC might be in quick recovery since the necessary time to make it change to the long
recovery, but, at the same time, telecommand might come back implying that the state
should change to nominal as well. To be consistent, it is important to identify carefully
possible conflicts and prioritised them. In our model, state changes produced by any
other change in the system are prioritised over inactivity and time delays.

Finally, two small additional sub-systems (Figure 5.3) were added to the original
model and represent the telecommand and radio failures. In our approach, states of
these two sub-systems are hidden and changes of state may randomly appear with
a given prior probability. Any change of state from one of these sub-systems is not
supposed to be detected immediately by the RPS, the drone, or the ATC. Detection
of a failure by a agent in this model is a random chance defined with a prior prob-
ability, but it would have been possible to model it otherwise. Obviously, if one of
these sub-systems is in its lost state, transitions dependent from the corresponding
communication cannot be fired.

This model was designed to be used in the point of view of one of the agents. The
agent has a perfect knowledge of the state of its sub-systems, but may have only partial
knowledge of the state of the other agents (and no information about the hidden sub-
systems). This model is supposed to measure the risk of an undesired behaviour
with potential partial knowledge on the global system. For instance, an interesting
behaviour to detect would be to identify if two agents have a different understanding
of the situation with no possibility to fix it except in case of a second failure. Such
behaviour may append when radio and telecommand are lost at the same time, the
RPS detects the telecommand loss and finally switches to mode long recovery procedure,
but without the radio it cannot warn the ATC. At the same time the UA detects the
telecommand loss too and sends a 7700 code which is detected by the ATC. After TT
minutes, its state change to urgency service. But, during this time, the telecommand
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came back and the RPS returned in nominal state. Consequently, even if the radio
comes back, the RPS will never try to contact the ATC that will eventually consider
that the drone is redirected, despite the fact that it is not and that the RPS does not
know that the ATC is in urgency mode. Part of the corresponding ProbLog program
is presented in Appendice B.

As well as the hurricane model, it is possible to infer the probability of a chronicle
query with partial information and use instances of chronicles as observations. In
the drone model, noisy information has not been represented, but it might be easily
defined. Nonetheless, time computation remains the main problem since it is difficult
for this model to go further than ten instants for the duration of the system.

5.4 Conclusion

In this chapter, we presented the definition of chronicles using ProbLog. We showed
that, contrary to MLNs, this approach is more convenient for this task, notably with
the semantic of rules that assumes closed world and circumscription. Furthermore,
using directly a probability rather than a weight is more suitable and does not change
the impact of rules for different sizes of model instantiation.

But, this approach is quickly intractable and not scalable on large models. Apply-
ing this approach on larger stream would require to simplify the model by, for instance,
assuming independence between events that would suppress the Markov chain model.

Such representation based on ProbLog is not satisfactory since it is facing combi-
natorial explosion or bring too many restrictions.

Nonetheless, the dependency representation between events based on Markov
chains presented here is often used in literature and, notably, among automaton-based
approaches4. This is quite normal since automata are practical and used in many CEP
representations since it is usually possible to define an automaton recognizing a given
CE. Consequently, in the next chapter we explore an ad-hoc approach based on au-
tomaton and NHMs to model and produce consistent probability estimation of CEs.

4More complex structure may be preferred to Markov chains like DBNs ([MM07]).
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S
ince previous approaches provided unsatisfactory results, in this chap-
ter, we propose a new method to produce good estimates of a chronicle
probability on an uncertain data-stream. This approach is inspired from

previous works using automaton-based representation (cf. Chapter 2) and the work of
Pachet, Roy, and Barbieri [PRB11] who generate music and lyrics samples with respect
to a style learned with a NHM.

The common problem from the previous approaches was the non-scalability to the
size of the model. MLNs are highly sensitive to the size of chronicles and ProbLog
to the duration of execution making them quickly intractable or, worst, not reliable
for the MLN case. Consequently, the method presented in this chapter focuses on its
scalability for higher dimensional problems, and on allowing specifications of complex
relations between LLEs using instances of CEs providing a high level of expressiveness
for the declaration of prior knowledge.

Section 6.1 introduces our ad-hoc approach to evaluate the probability of a chron-
icle recognition. Section 6.2 presents the method to apply high-level constraints ex-
pressed as chronicles representing prior knowledge. Section 6.3 proposes improve-
ment techniques to accelerate computation of our method. Finally, Section 6.4 applies
our method to the drone model.

6.1 Uncertainty estimation using Markov chains

6.1.1 Initial approach

In [PRB11; Bar+12], the authors are interested in generating music partitions or lyrics
using Markov chains. These Markov chains are usually learned with a specific corpus
to capture its style, like jazz composition or lyrics. But such artistic productions may
have many restrictions relative to the domain. For instance, lyrics usually rhyme and
follows specific rhythmic which require temporal dependencies. These constraints are
used to create a NHM (cf. Section 3.3) and then used to sample partitions or lyrics.
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Our approach is inspired from this method where our model is represented by a
Markov chain describing the (conditional) relations between the LLEs produced by the
system. Accordingly, local constraints are the observations provided by the potentially
erroneous data-stream. Note that the NHM is not used to compute the probability
of a given data-stream as it is usually the case for Markov chains, but to find a real
execution of the system explaining it.

For our case, we are not interested to find one possible execution explaining the
given data-stream, but the probability of appearance of a chronicle ch regarding all
possible explanations. An explanation is a sequence of states of the system that may
produce the data-stream. Fortunately, given a Markov chain M and a data-stream
φ, the resultant NHM M̃ asserts that sequences produced follows the probability dis-
tribution of M given the constraints. Furthermore, the probability distribution of the
chronicle ch in this model is directly connected to the sequence probability distribution
since

PM̃(ch) = ∑
s∈SC

g(ch, s)× PM̃(s) with

 g(ch, s) = 1 if s produces a recognition of ch

g(ch, s) = 0 otherwise
(6.1)

with s a sequence of states and SC the set of all sequences of states explaining the data-
stream. Consequently, it is possible to perform a simple MCMC method that samples
explanatory sequences using the NHM and then parses each sample with a CE recog-
nition system to identify if it produces a recognition of the chronicle ch. With enough
samples, the sampled sequences would tend to probability distribution of possible se-
quences provided by the NHM and, consequently, the probability distribution of the
chronicle recognition. In this thesis, we used CRL to describe chronicles and parse
the samples. After parsing each sample, due to Equation 6.1, the ratio of recognition
along the full set tends to the probability of recognition in the model represented by
M̃. This process is summarised in Figure 6.1.

This process is relatively simple, but for convenience we provide a small example
based on the hurricane model used in the previous chapter.

6.1.2 Application on a toy example

For this example, the goal is to reproduce the results obtained in the hurricane model
by ProbLog in the previous chapter with the same experiments. As shown in Fig-
ure 6.1, this method requires four components: the Markov chain, the data-stream, the
chronicle used as query, and the CE recognition system.



136 Chapter 6. Chronicle inference on complex systems using Markov chains and automata
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Figure 6.2: The hurricane alarm model.
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C & Off 1
C & On 0
H & Off 0
H & On 0

(a) Initial

t
t + 1

C & Off C & On H & Off H & On

C & Off 0.54 0.36 0.02 0.08
C & On 0.81 0.09 0.001 0.099
H & Off 0.42 0.28 0.06 0.24
H & On 0.63 0.07 0.003 0.297

(b) Transitions

Table 6.1: Marginal probability for the initial state and conditional
probabilities from a state to another. (C:Calm weather, H:Hurricane,

Off:Alarm off, On:Alarm on)

M̃0 M̃1 M̃2 M̃3 M̃4t0

C & Off
C & On
H & Off
H & On

t1

C & Off
C & On
H & Off
H & On

t2

C & Off
C & On
H & Off
H & On

t3

C & Off
C & On
H & Off
H & On

t4

C & Off
C & On
H & Off
H & On

Figure 6.3: Dependency graph for the NHM M̃ com-
puted for the hurricane model and the data-stream φ1 =
[⟨off , 0⟩, ⟨off , 1⟩, ⟨off , 2⟩, ⟨off , 3⟩, ⟨off , 4⟩]. An edge between two states

indicates a possible state change from t to t + 1.

For the Markov chain, the model in Figure 6.2 is transformed into two matrices
representing the probabilities for the initial state and the transition probabilities from
an instant to the next one. Since the model is divided into two subsystems composed
of two states each, it is transformed into one model with four states which is the
Cartesian product of the subsystems’ states represented in Table 6.1. Since all new
states are mutually exclusive, it is just the product of the two probabilities provided
by each subsystem. Remember, though, that a change of state of the alarm from t to
t+ 1 is dependant of the state of the alarm at t and the state of the weather at t+ 1 and
not the weather at t. For instance, the transition probability p from a state where the
weather is calm and the alarm is off (C & Off) to the state where there is a hurricane
with the alarm off (H & Off) is the product p = 0.1× 0.2 and not 0.1× 0.6, since the
probability for the alarm to change is conditioned by the new state of the weather.

For the data-stream, using the same φ1 = [⟨off , 0⟩, ⟨off , 1⟩, ⟨off , 2⟩, ⟨off , 3⟩, ⟨off , 4⟩] as
in the previous chapter, it is possible to generate the NHM suppressing all inconsistent
states and transitions. For a stream φ1, the corresponding graph of dependencies is
presented in Figure 6.3 where each possible transition from a state to another according
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to the time is represented. NHM is computed as explained in Section 3.3. Note that,
even if the possible transitions from t1 to t2 are the same as from t3 to t4, their respective
transition probabilities are not equal. For instance, in this case:

M̃2 =


0.96961326 0 0.03038674 0

0 0 0 0
0.89215686 0 0.10784314 0

0 0 0 0

 , M̃4 =


0.96428571 0 0.03571429 0

0 0 0 0
0.875 0 0.125 0

0 0 0 0


(6.2)

With respect to the probabilities in the NHM, samples might be easily produced with
a simple forward algorithm.

The last step requires to define a chronicle as query and to provide the CE recog-
nition system to parse the samples. In this case, the chronicle is the same as in the
previous chapter defined in Equation 5.16. Using the Chronicle Recognition Library1

(CRL), each sample is parsed to detect a recognition. The ratio of samples producing a
recognition approximates the probability of this chronicle to appear with φ1. Note it is
easy to specify queries asking for a certain number of recognition per stream. Indeed,
CRL counts in each sample how many times the chronicle has been recognised, so
it is possible to consider only samples that produce more, less, or exactly as specific
number of recognitions. For instance, in this scenario, for 10 000 samples generated,
CRL would detect approximately 101 samples producing at least one recognition of
the chronicle in Equation 5.16 where, in average, 94 produce only one recognition, 6.5
produce 3 recognitions, and 0.5 produce 6 recognitions. This might not be done in
ProbLog without defining a specific chronicle that represents n occurrences of a partic-
ular chronicle, but it may be performed with our MCMC approach with no additional
cost.

6.1.3 Discussion

Speed and efficiency are mainly dependent on the number of samples and their length.
Computation time is linearly dependent on the number of samples since each sample
is the same length, but it is quadratic on the length of the samples due to the analysis
with CRL. Time computation with the MCMC approach is around 300 seconds for 10
000 samples shorter than 60 LLEs. In Figure 6.4, computation speed for this problem
is compared with Problog, MLN, and our MCMC technique. From these results, note
that MLN speed is provided, but probability estimation is inconsistent; ProbLog is

1http://chroniclerecognitionlibrary.github.io/crl/o.html
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Figure 6.4: Inference time for 10 000 samples regarding stream length
with ProbLog, MLN and our MCMC approach

faster than the MCMC approach but is intractable when samples length reached 16
elements2.

Even if this approach may perform better than MLNs and ProbLog, it may still
be slower than other works like Lahar [Ré+08] or PADUA [Mol+14]. Furthermore,
our method does not allow defining chronicles as observations on the model, which
is quite common with HMM or automaton based methods. Nonetheless, in the next
section, we present an extension of our work allowing for specification of evidences as
chronicles.

6.2 Expressing high-level constraints using chronicles

In the previous section, we presented a new approach to perform chronicle probability
inference. But, remember that one of the main goal is to represent evidences as rules
or high level expressions; in this case in the form of a chronicle. It is a complex task
and few works achieved it and when a method achieved it, it usually comes with
scalability issues.

2Problog produced, in fact, an out of memory with a stream length of 16 elements after hours of
computation on 16Go of RAM.
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For our method, we consider that a chronicle used as an evidence should be de-
fined between an interval. This interval should be specified with two instants of time
and not conditioned by other chronicles or events. The time interval might be the
exact boundaries of the evidence chronicle or an interval defining the chronicle should
appear in it3. We will present the different steps required to perform the inference. Fig-
ure 6.5 summarises the different steps and might be followed through the illustration.

6.2.1 Evidence behaviours expressed as sub-streams

Expressing a chronicle as a constraint over an interval is equivalent to consider as
constraints all possible sub-streams Φ producing a recognition of this chronicle on
this interval. A sub-stream should not be confused with the data-stream. In this case,
a sub-stream is a complete explanatory succession of states of the system during an
interval, while the data stream is just partial knowledge. In this section, we mostly
consider the problem without specified data-stream, but it might be easily integrated
to the final computation.

The set Φ represents all possible executions of the system regarding the constraints
during two instants of time and one sub-stream is a possible execution of the system
interval of time. Finding all the sub-streams is not our main purpose here, and may be
defined as a CSP handled by a solver. To avoid combinatorial explosion of the solving,
the chronicle is specified as a constraint over a restricted interval of time interval and
not over the whole stream. For instance, specifying a sequence of two states as a
constraint in a time interval gathers all the possible sub-streams on this interval where
this chronicle should be recognised.

Considering that we have Φ, a naive approach would be to sample over each of
these sub-streams φ ∈ Φ, since each could be expressed with unary and binary con-
straints. Given the set Φ of sub-streams, the probability of a sample s on these con-
straints would be equal to:

P(s|Φ) = ∑
φi∈Φ

PM(φi|Φ)× PM̃φi
(s) (6.3)

where PM̃φi
(s) = PM(s|φi) is the probability that the sample is generated by the model

M under the constraint φi. Computing this probability is achieved using the previous
approach based on NHM.

3Which is, in fact, equivalent to use an operator During.
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But, as no φi is included in another φj, the sequences that they might generate are
independent. Consequently, if a stream s follows the constraints Φ, it can be generated
by only one sub-stream φ′ ∈ Φ4, meaning only one PM̃φ′

(s) has a non-zero probability.
Furthermore, because of the independence:

PM(φi|Φ) =
PM(φi)

PM(Φ)
(6.4)

And if φ′ is the sub-stream producing s, Eq. 6.3 may be rewritten:

P(s|Φ) =
PM(φ′)

PM(Φ)
× PM̃φ′

(s) (6.5)

However, this approach requires sampling over all sub-streams and their number
grows exponentially with their length (depending of course on the chronicle: the more
it is constraining, the less the possible outcomes), it could lead to a drastic amount of
sampling even using parallel computing. A solution might be to adapt the number
of samples regarding the probability of the sub-stream. For instance, if computa-
tion uses N samples, the number of samples for this sub-stream might be reduced to
|PM(φi|Φ)× N|. Unfortunately, this technique cannot be used for a fixed number of
samples N if |Φ| > N and especially when, given a sub-set Φ′ ⊆ Φ with φj ∈ Φ′,
P(φj|Φ) < 1

N but P(Φ′|Φ) ̸≈ 0. In such conditions, it might still be possible to use
more samples, but it still requires to compute many NHMs which would slow down
computation. To counteract this, we propose an alternate representation of Φ based
on graphs and automata that reduces the number of NHMs required.

6.2.2 Graph representations of constraint sub-streams

To reduce the number of necessary samples, we take advantage of the NHM structure
to represent the constraint streams. Indeed, consider as an example the dependency
graph for the NHM in Figure 6.3, it represents a set of binary constraints between
states, but, as well, the set of possibles streams explaining some evidences. Following
this idea, since a chronicle might be represented as a set of sub-streams, these sub-
streams might be represented as a set of dependency graphs as well. These graphs
might be considered as a constraint on the interval specified for the NHM structure.
We name these graphs constraint sub-graphs and define the notion of acceptance:

4Note that the opposite is not true since many streams might be generated by the same φ′.
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φw = [⟨a, 1⟩, ⟨b, 2⟩, ⟨c, 3⟩]
φx = [⟨a, 1⟩, ⟨a, 2⟩, ⟨b, 3⟩]
φy = [⟨c, 1⟩, ⟨a, 2⟩, ⟨b, 3⟩]

1
a
b
c

2
a
b
c

3
a
b
c

Figure 6.6: Three streams represented as an accepting graph

φz = [⟨b, 1⟩, ⟨a, 2⟩⟨a, 3⟩]
a
b
c

a
b
c

a
b
c

Figure 6.7: Non accepting graph for Φ′ = Φ
∪

φz

Definition 6.2.1. A constraint sub-graph is accepting for the constraint sub-streams if
all paths are in bijection with them.

For instance, if a constraint Φ is defined from the streams {φw, φx, φy} = Φ in
Figure 6.6 they may be represented in one sub-graph. Following the different paths
from left to right reproduces Φ, consequently, this graph is accepting for Φ. But not
all sets of constraint might produce only one accepting graph. For instance, if a new
set of constraint streams Φ′ = Φ

∪
φz is defined with φz = [⟨b, 1⟩, ⟨a, 2⟩⟨a, 3⟩] it is

not possible to represent it with one graph since it would not be accepting. Indeed,
the graph directly constructed from Φ′ in Figure 6.7 would recognise the sub-stream
[⟨a, 1⟩⟨a, 2⟩⟨a, 3⟩] which is not part of the set Φ′. Nonetheless, it might be represented
as a set of accepting graphs for sub-set of Φ′. Figure 6.8 represents a possible set
of accepting graphs for Φ′ where the left graph is accepting for Φ and the right is
accepting for φz, so this set of graph is accepting for Φ′.

Note that the number of sets is entirely correlated to the set of sub-streams used
as constraints and not correlated to the number of sub-streams. For instance, defining
a set Φ′′ = Φ′

∪
φα
∪

φβ
∪

φγ with φα = [⟨a, 1⟩, ⟨a, 2⟩, ⟨a, 3⟩], φβ = [⟨b, 1⟩, ⟨a, 2⟩, ⟨b, 3⟩],
and φγ = [⟨c, 1⟩, ⟨a, 2⟩, ⟨a, 3⟩], it is possible to represent this set in only one accepting
graph (cf. Figure 6.9).
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Figure 6.8: Accepting graphs for Φ′ = Φ
∪

φz
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φα = [⟨a, 1⟩, ⟨a, 2⟩, ⟨a, 3⟩]
φβ = [⟨b, 1⟩, ⟨a, 2⟩, ⟨b, 3⟩]
φγ = [⟨c, 1⟩, ⟨a, 2⟩, ⟨a, 3⟩]
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a
b
c

a
b
c

Figure 6.9: Accepting graph for Φ′′ = Φ′
∪

φα
∪

φβ
∪

φγ

6.2.3 Sampling using constraint graphs

Given a set of graphs G representing all possible constraint sub-streams ΦG regarding
a specific chronicle set as evidence, it is possible to use each graph g ∈ G, representing
the set of sub-streams Φg ∈ ΦG as constraint to define a corresponding NHM M̃g.
Regarding the model M and an explanatory stream s, the probability for this stream
to be produced by a graph g is

P(s ∈ Φg) = P(Φg|ΦG) =
PM(Φg)

PM(ΦG)
(6.6)

Indeed, Φg
∪

Φg′ = ∅ for any g, g′ ∈ G with g ̸= g′. This marginal probability of
a set PM(Φg) is the product of the unnormalized constrained matrices of the NHM
M̃g, which is easily evaluated during the backward algorithm. And PM(ΦG), due to
independence between graphs, is the sum of probabilities for all graphs:

PM(ΦG) = ∑
g∈G

PM(Φg) (6.7)

Consequently, the probability P(s|ΦG) of a stream s is similar to Equation 6.3, but
considering sets of sub-streams:

P(s|ΦG) = ∑
g∈G

PM(Φg|ΦG)× PM̃Φg
(s) (6.8)

Equivalently, only one graph may produce the stream s so PM̃Φg
(s) = 0 for every graph

that cannot produce s. So, given the graph gs that can produce s:

P(s|ΦG) = PM(Φgs |ΦG)× PM̃Φgs
(s) (6.9)

with PM̃Φgs
(s) evaluated with the NHM M̃Φgs

. From this point, sampling might be
performed with different approaches. Each NHM may be used to produce the same
number of samples and the results are weighted regarding PM(Φgs |ΦG) or samples are
produced with respect to the distribution PM(Φgs |ΦG).
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Figure 6.10: Minimal automaton AΦ′ for the streams Φ′ = φw, φx, φy, φz
and resulting separation.

6.2.4 Finding the set of constraint sub-graphs for a chronicle

We did not explain how to find the set of constraint sub-graphs representing the chron-
icle set as evidence, which is not trivial. In Section 6.2.1, we showed that a chronicle
set as evidence in a time interval might be expressed as a set Φ of sub-streams. Each
sub-stream is finite and has the same length, so, given Φ, it is possible to represent
them into an acyclic DFA A. The language of this automaton is the sub-streams set it
represents L = Φ and its alphabet Σ is the set of states of the Markov chain M. For in-
stance, the sub-streams set Φ′ previously defined (cf. Figure 6.7) might be represented
into the minimal automaton in Figure 6.10 with L = Φ′ and Σ = a, b, c.

The automaton representation is used to find the accepting graphs for Φ.

Definition 6.2.2. An automaton A is accepting for a set of sub-stream Φ if this set
might be represented in only one accepting graph.

If an automatonA is not accepting for Φ, it should be divided into a set of automata
A where each Ai ∈ A is accepting for its corresponding language Φi ∈ Φ. Languages
between two automata should have no intersection.

Luckily, this might be achieved quite easily since it requires to identify incompatible
streams in the automaton

Definition 6.2.3. Two edges of the DFA are incompatible if they are at the same depth,
share the same transition from Σ leading to two distinct states in Q. Two sub-streams
are incompatible if they each contain one of two incompatible edges.

If an automaton has incompatible streams, the corresponding sub-streams set is
not representable in one accepting graph. Inversely, if there is no incompatible stream,
the automaton might be represented into an accepting graph. Conversion is almost
straightforward from an automaton to a graph since edges from the automaton are
nodes of the dependency graph and are connected if consecutive edges in the automa-
ton have corresponding labels.
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For instance, in Figure 6.10, transitions between q1, q5 and q4, q5 lead to the same
state and thus are not incompatible. By contrast, transitions between q4, q5 and q6, q7

are incompatible as they are at the same depth from the initial state, depend on the
same symbol a, and lead to different states. In the figure, a possible division of the au-
tomaton is proposed in two automata: one with dashed red edges and the other with
dotted blue edges. Note that these automata are the representation of an accepting
graph set for Figure 6.8.

For the automaton division, we proposed a breadth-first division algorithm recur-
sive on depth detailed in Algorithm 4 and that we briefly explain. Lines 1 and 2 take
all the edges at the specified depth and construct a set of sets of edges where no set
contains two incompatibles edges. Many approaches may be proposed for this task,
but we just applied a pushing algorithm that place each edge one by one in the first set
without incompatibility. If each existing set as an incompatible edge with the current
one, a new set is created. Line 5 creates a new automaton using a set of edges and
takes all descendant and ancestors edges accessible from the current set. This assert
than no sub-stream is removed during the division. Lines 9 and 7 define the recursion
and end criteria. Algorithm stops when each recursion reached the terminal node.

Algorithm 4: Split_automaton
inputs : A, the automaton associated to the language

d, depth of a layer
outputs : sol, a set of automata with no incompatible edges

1 edges_depth← all edges at depth d
2 edges_sets← sets of edges from edges_depth with no incompatible edges
3 for set ∈ edges_sets
4 Create new automaton A′ with all edges from set, descendants of set and

ancestor of set
5 Minimize A′
6 if d = len(A′)
7 add A′ in sol
8 else
9 add Split_automaton(A′, d + 1) in sol

10 return sol

This algorithm does not necessarily provide a minimal splitting in terms of amount
of sets, but ensures that the resultant sets are indeed independent, and is sufficient for
our purpose. Finding the optimal separation that minimises the number of automaton
seems difficult to perform, and we did not investigate further this open question.
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Figure 6.11: Full process representation for the MCMC approach with
chronicles set as evidence.

6.2.5 Discussion

In this section, we presented an original method, summarised in Figure 6.5, to repre-
sent a chronicle set as evidence into a set of constraint sub-graphs. From the overall
perspective of the sampling, represented in Figure 6.11, the full process is quite similar
to the process without complex prior knowledge, and just performs prior transforma-
tions for evidence chronicles (cf. Logical part in Figure 6.11). We considered initially
for the explanations that no data-streams were provided, but setting the constraints
from the data-stream over the NHMs is almost straightforward since it just requires
to constrain every NHM with the information from the data-stream. Since such pro-
cess provide new constraints to NHMs, it may potentially lead to remove inconsistent
NHMs (with zero probability), but it does not break independence between NHMs.

Compared with ProbLog (cf. Figure 6.12 ), inference with the MCMC approach
produces expected results regarding the number of sample. Meaning that it is possi-
ble to obtain estimations with one percent error in order of minutes on models that
ProbLog could not process.

Despite these results, this technique may, in some perspectives, be considered slow
since it may takes several minutes and perhaps hours for long duration analysis. Fur-
thermore, CE recognition may takes extensive times depending on specific samples
and query chronicles.

In the case of evidence chronicles, two strong critiques might be made. Due to the
CSP phase, which may easily produce combinatorial explosion, interval used to bound
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Figure 6.12: Estimation error compared to exact evaluation (based on
ProbLog).

the evidence chronicle has to be particularly small (less than ten instants in general)
and may easily have a long computation time, slowing down the overall method. Fur-
thermore, the division of the resultant automaton produces uncertain results. Indeed,
since the chronicles tested are restricted in size, because of the interval boundary, au-
tomata tested were always small5 and rarely produce more than four divisions, but
nothing asserts that, in case of a bigger automaton, divisions are contained and do
not produce a large amount of automata. In the next section, we propose different
improvements mainly to reduce the overall computation time.

6.3 Speeding up inference computation

In this section, we propose different extensions or modification of our work with aim
to improve the speed of our method. They may have some restrictions, but usually
speed up computation considerably.

6.3.1 Precisions about the chronicle representation

In our work, we did not consider that, despite chronicles are expressed with a context-
free grammar, they may easily be represented as DFA. In fact, in the early implemen-
tation of chronicles, they were represented by duplicate automata [KCC10]. Duplication

5Small regarding their number of states, but, nonetheless, they still represent thousand of sub-streams.
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St−1

At−1
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At

Figure 6.13: Markov chain representation for chronicle inference. In
blue P(At|At−1, St) provided by the automaton, in red P(St|St−1) pro-

vided by the NHM.

of automata was necessary to assert historisation of recognition (cf. Chapter 1), but, in
most of the cases treated in this thesis, enumerating all possible recognitions regardless
of their probability is not interesting and maybe not feasible.

During this thesis, transformation of a chronicle representation into an automaton
was not studied, but we are confident that this task may be achieved and automatised
regarding existing representations for chronicles like duplicate automata and Petri nets
[KCC10; Pie14]. For the presented extensions, we will assume that a DFA representa-
tion exists and may be easily found. We do not think this hypothesis to be too strong,
since most chronicle operators may be represented as combination of sequences. For
instance, a chronicle (a b) overlaps (c d) might be rewritten as a chronicle made only
with sequences a c b d, which may be directly represented as a DFA, even if a, b, c and
d are as well DFAs representing chronicles.

6.3.2 Model-checking approach for chronicle inference

Supposing that, for a chronicle set as query for inference, its DFA representation is
known, it is possible to speed up inference and compute the exact probability with
respect to the model. Indeed, given the variable St that represents the state of the
system at time t and At the state of the automaton A describing the chronicle, Amight
be seen as representing the conditional probability P(At|At−1, St)6. The problem might
consequently be represented as a Markov chain like in Figure 6.13 where P(St|St−1) is
provided by the NHM and P(At|At−1, St) by the DFA. Computation is done trivially
as for a Markov chain using forward propagation. The probability for the chronicle
will be the probability at the end of the process that the automaton reached a terminal
state.

6Nonetheless, in this case, given At−1 and St fixed, P(At|At−1, St) is equal to one for only one state
and null for all the other states.
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Figure 6.14: DFA for chronicle (a b)− [c] with Σ = a, b, c, d

q0 q1 q2

a 0 1 0
b 1 0 0
c 1 0 0
d 1 0 0

(a) P(q0|At−1, St)

q0 q1 q2

a 0 1 0
b 0 0 1
c 1 0 0
d 0 1 0

(b) P(q1|At−1, St)

q0 q1 q2

a 0 0 1
b 0 0 1
c 0 0 1
d 0 0 1

(c) P(q2|At−1, St)

Table 6.2: Representation of chronicle (a b) − [c] with Σ = a, b, c, d as
conditional probabilities P(At|At−1, St)

As a matter of example, if we define a chronicle (a b)− [c], which is a sequence a b
without c between them, where a, b, c are states of an imaginary system composed of
four states Σ = a, b, c, d, the chronicle might be represented as the DFA in Figure 6.14.
Rewritten as a conditional probability P(At|At−1, St), the automaton would be repre-
sented by the three probability table in Table 6.2.

Using this approach is extremely beneficial for computation speed since inference
computation would not require sampling any more. For instance, on a data-stream of
length 500, this approach would perform the calculation in less than a second, while
the sampling approach would take around 1 000 seconds. For scale comparison, this
approach may process a data-stream of length 106 in 30 seconds. Note that this method
has no impact on the NHM computation, with or without chronicle set as evidences
so it might be used with no restriction. But, there is still difference with the sampling
approach because this method cannot compute the probability that a chronicle was
recognised n times. To keep track of the number of recognitions it would be necessary
to design a chronicle c that recognises n times a chronicle c′. It is still possible to
represent it, but the chronicle would be quite complex to write without automatic
process for large n.
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Figure 6.15: Acyclic version of DFA in Figure 6.14 with seven iterations

6.3.3 Fast computation of the automaton of a chronicle evidence

The main issue when setting chronicles as evidences is to find the corresponding
acyclic automaton. With a CSP approach, computation is highly inefficient and re-
strains drastically the range of the interval for the chronicle. Instinctively, using the
DFA seems the simplest way to do it since the representation is given. But, remember
that, in order to constrain the NHM and find the independent constraint sub-graphs,
it is necessary to find the acyclic DFA, computed initially by the CSP solver. In some
automaton-based approaches for CEP uncertainty, like the AIG in [SKK08; WCZ13],
or the tree structure extension on cas-graph from [Faz+18a], alternative executions are
usually expressed in a tree structure, resulting of all possible executions of the DFA.
Such representation might be expensive to compute, as for the CSP solving approach.
It is, in fact, unnecessary since it is possible to construct directly the acyclic automaton
Ã from the non-acyclic DFA A.

Indeed, since the interval length l of the constraint is known as well as A, Ã might
be constructed iteratively developing A l times with only constraint to start from an
initial state and to end in a final state. For instance, the DFA in Figure 6.14 might be
developed in its acyclic version of length 7, presented in Figure 6.15.

6.4 Probability Estimation of a Behaviour of the Drone Model

6.4.1 Drone model to NHM

As for the ProbLog approach, the drone model has been tested with the Markov chains
method. Some modifications have been introduced from the original model presented
in Section 1.3. The new model is presented in Figure 6.16. First difference is that the
UAV is not represented. For this model, it has been chosen to represent all information
provided by the drone as a stochastic process. For instance, a transponder code change
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is just defined by a probability dependent of other sub-systems, like the current TC
state. This allows to reduce the size of the matrix used for computation.

As the method needs to be structured as a Markov chain, we transform our set of
sub-systems into one general system where states are combinations of possibles states
of all sub-systems. Initially, there were eight sub-systems that could change between
two and six states each leading, after transformation, to an unique system of 6 480
states. Fortunately, not all the states are reachable so the system might be reduced
down to 3360 states with their transition probabilities. All transitions are represented
into a matrix M used then to build the NHM.

For the statistical model, humans are not supposed to misunderstand each other
during communication, even if in real life it could be a frequent source of system
failure. Furthermore, it has been chosen to not represent waiting time between two
states with a finite counter but with a transition probability which may be triggered
at each instant. For instance, transition between TC_Quick_Recovery_Procedure and
TC_Long_Recovery_Procedure is supposed to be ZZ minutes delay, but on our model
it is described with a chance at each time to change the current state. It would have
been possible to represent it as a true delay but it would have increased drastically the
size of our model, without being really interesting for this study.

6.4.2 Results and Analysis

For performance analysis, a specific test case has been designed using the new drone
model and with one chronicle specified as a constraint. The study does not use the
speed up approaches presented in Section 6.3 and focuses on the sampling method.

The chronicle defined as constraint is the following:

ATC_Rerouting_Mode_Not_Selected
ATC_Rerouting_Mode_Inferred
ATC_Rerouting_Mode_Confirmed

This chronicle is really simple as it describes that a sequence of three events happened
during the execution: the controller detected a failure, then supposed a rerouting,
which was finally confirmed by the RPS. Still, other events might be triggered during
this sequence. This behaviour happened during time 20 to 27. Expressed as con-
straint streams, it represents 11 565 possible sub-streams for the only sub-system ATC
Service, but as the other sub-systems might change their states in parallel, the number
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of possible executions is much bigger. Using our method to define chronicles as con-
straints, we have to separate the possible sub-streams into different NHMs. Regarding
this constraint, our algorithm splits them into ten NHMs.

No data-stream is used since the constraints it provides has no impact on the sam-
pling time and analysis time. The number of constraints only affects the computation
of the NHM, but it will be showed later that it is quite negligible regarding the other
parts of the computation.

For the computation, the number of samples is set to 104, which gives a precision
of 10−2. The query used is the following chronicle:

( ( (RPS_TC_Long_Recovery_Procedure
(ATC_Rerouting_Mode_Not_Selected ||
ATC_Rerouting_Mode_Inferred ||
ATC_Rerouting_Mode_Confirmed)
ATC_Nominal_For_RPS)

-[ATC_Nominal_For_RPS]) then 10)
-[ATC_Nominal_Service]

meaning that the RPS passed into a long recovery procedure and went back to the
nominal state while the ATC believes at a moment that the emergency situation was
active and never went back to nominal ten units of time after the RPS went back to
nominal. This behaviour is potentially dangerous as the two agents had different
beliefs on the current situation with no communication planned.

Table 6.3 presents the computation time depending on the length of samples. Times
for samples generations and parsing with CRL are separated. Last column displays
the results for the model checking approach presented in Section 6.3.2. With MCMC

Stream length Sampling (s) Analysis (s) Full time (s) Model checking (s)

50 56 81 137 2.4
100 115 121 236 4.8
200 233 274 507 10
500 575 1690 2265 25
1000 1075 10300 11375 52
2000 2327 100075 102402 102

Table 6.3: Computation time regarding the length of samples for the
drone model (for 104 samples).

approach, most of the computation time comes from the analysis, but it could be
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easily reduced using a validity window with CRL that would reduce drastically the
computation time on long data stream. Nonetheless, results shows the model checking
approach to be much faster than the sampling technique.

NHM computation time and space The time computation presented in Table 6.3
does not include the time used to calculate the NHM. The computation time for the
NHM depends on two parameters: the number of states of the system and the time of
the latest constraint used to build the NHM. Dependence from the first one is obvious
as it directly impacts the size of the transition matrix. For instance, with the drone
model, the dimension of the transition matrix is 3360× 3360 so the NHM is composed
of a set of matrices with the same dimension. But, in fact, the most important pa-
rameter on computation time is the instant of the latest constraint. Indeed, it is not
needed to compute more transition matrices after this point as the model just requires
the initial transition matrix M. For instance, suppose a stream length of 1000 but no
constraint is defined after time 500, the system will change as defined by the homoge-
neous Markov chain base on M. So no more matrix needs to be calculated between
times 501 and 1000. Consequently, the computation time is linearly dependent on the
time of the last constraint.

In fact, computation time is less restrictive than the space needed to store the
NHM. Supposing that calculation uses double-precision floats encoded in 64 bits, one
matrix of the model would use around 86 Mio of space. Storing a NHM composed
of 100 matrices will use more than 8 Gio on memory space, so it might be difficult to
constraint a full data stream compound of thousands events. Hopefully, it is possible
to drastically reduce the storage space using interlaced computation of the NHM and
the samples. Technically, NHM is computed a first time but just some matrices at a
given interval are stored. When sampling is performed, matrices between two stored
ones are re-calculated just for the sampling process. For instance, if the available
memory space only allows storing 100 matrices, it is still possible to perform our
method with a NHM of 2500 matrices where 50 are used as memory steps of the
NHM computation and the 50 others are used as buffer for re-calculated matrices
during the sampling step. This comes with a cost on time computation up to a factor
2, but it remains a quite interesting compromise.
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6.5 Conclusion

Overview In this chapter we presented a new approach to structure and compute
uncertainty for a CEP perspective and more precisely the data uncertainty. The objec-
tives were to compute the probability of a chronicle defined as a query on an uncertain
data-stream. Furthermore, we wanted to be able to specify complementary knowledge
provided as a chronicle observed in an interval of time.

Our initial approach separates clearly the uncertainty representation from the CE
recognition. The uncertainty is modelled using a Markov chain which might be restric-
tive, but at least permits representing complex conditional dependencies explaining an
observed data-stream, while many works still consider independence between events.
The data-stream is used as constraint on the Markov chain to define a NHM. The re-
sulting NHM embedded all the possible executions of the system with regard to the
initial Markov chain. The NHM is used to generate samples of explanatory execu-
tions which may be parsed using a CE recognition system to identify and count the
occurrence of the CE defined as query. Note that, since the CE recognition system is
completely disconnected from the uncertainty representation, it does not require to be
specifically the chronicle representation and might be any other CE representation.

In a second time, we showed it was possible to specify high-level constraints on
inference using chronicle specification to define the constraints. Again, the CE repre-
sentation is not restricted to chronicles and might be any system that might be solved
by a CSP solver regarding a specified interval of time.

We presented different methods to fasten inference by improving representation of
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high-level constraints into sub-graphs or using model-checking approach to represent
chronicles as a property to assert which avoids sampling. Finally, we showed our
general approach to be applied on realistic scenario with a system dimension, a time
of inference and an expressiveness on observations that, to our knowledge, do not
appear, all together, in the current state of the art.

Discussion Before closing this chapter, we want to address some critics on our ap-
proach or point out some limitations.

The first limitation above all might obviously be the time representation. In the
systems we presented, time is discretised and, more importantly, bounded on fix inter-
val. Meaning that between two instants the duration is always the same. Obviously, it
is an important restrictions since, for many systems, it would be preferable to consider
time continuous or, at least, discretised with variable durations between two instants.
Nonetheless, it does not seem impossible to adapt, but requires to design the NHM
using a representation of time impacting the transition probabilities. This would be an
interesting subject to investigate.

The MCMC approach is a simple and efficient way to produce consistent estima-
tion of probability, but it remains too slow for online inference and, in particular, when
applied on long data stream7. Nonetheless, we showed that most of the time compu-
tation was used by the CE recognition system and recent investigations on CRL let us
think that this time might be reduced drastically. Furthermore, the model-checking
approach, even if it brings restriction on the type of query used for inference, reduces
drastically inference time in proportion that would make it viable for online analysis.
In this perspective, it would be necessary to reduce the time necessary to compute
the NHM. Even if the times presented in Figure 6.17 are high, we think that it might
be due to a poor implementation, especially on constraint specification and might be
optimised, even it is strongly dependent to the size of the NHM.

Indeed, in our approach, the Markov chain is always defined by composition of
states of sub-systems so it is easy to define and assert independence of streams nec-
essary for computation, but it leads to potentially huge Markov chains. We did not
investigate this subject, but it is primordial for speed and space efficiency.

A final interesting point that would require investigation is the automaton division
for representing and inferring with chronicles set as constraints. Indeed, performances
of this algorithm are unknown (in number of resulting automata), but it may suffer

7For instance, with the drone model, it takes more than one day to process a stream of 2000 events.
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from combinatorial explosion on specific cases. For instance, the acyclic DFA in Fig-
ure 6.15 produced a number of divisions which is definitely not linear with the size of
the acyclic DFA. In this particular case, it is due to the fact that between two layers of
nodes between d and d + 1, it always exists two incompatible edges that will induce
a division. At the end the number of divisions would be quadratic in the size of the
automaton. It seems there is no obvious solution to counteract this effect, but it may
be possible to use the constraints provided by the data-stream to reduce the number
of incompatibles edges.
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Conclusion

I
n this thesis, we explored different solutions to perform CEP under uncer-
tainty. More precisely, we focused on the evaluation of a CE on a data-
stream when it might be erroneous. In particular, we were interested on

models that allow representation and recognition of CE under uncertainty regarding
three different properties. First property was the scalability of the method used for
inference to the dimension of the problem since many techniques provided in the lit-
erature have an exponential growth calculation in the size of the problem. Second
property was the precision of the probability inference which is usually dependent of
the approach used to infer the CE probability. For instance, MCMC techniques would
always provide estimations while other methods may provide exact probability with
respect to the model. Finally, the last property focus on expressing prior knowledge
more complex than a simple event triggering at a specific time. This knowledge would
usually be a specific behaviour observed at a certain time and duration, but where no
information is provided on time recognition of the sub-activities.

The first solution explored used MLNs to represent chronicles. The representa-
tion of Markov logic is principally derived from FOL, inference algorithm uses a slice
sampling approach based on WalkSAT. We have shown that the logical structure of the
chronicle tends to reduce drastically the algorithm efficiency due to unbalanced rate of
solutions explored by WalkSAT. Consequently, the sampling approach produces incon-
sistent results. Furthermore, we showed that, contrary to the common belief, problem
design with Markov logic might be particularly difficult due to the uncertainty rep-
resentation with weights and due to misconceptions between conditional dependency
and logical implication. This work led to a publication in IEA/AIE [RKL17].

In a second time, a representation of chronicles with ProbLog was considered. Its
rule-based system suits well for a chronicle representation and inference, contrary
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to MLNs, is based on exploratory techniques based on BDD representation8. Such
technique allows ProbLog to compute exact probability of a CE with respect to the
model. But, consequently, it comes with non-scalability to high-dimensions due to
the NP-complete problem, making it not suitable for our work, even if it gives good
results on small instances and easily allows expressing rules as constraints.

In the last chapter, we presented a new approach based on MCMC, but, contrary
to the previous approaches, separates clearly uncertainty representation and CE recog-
nition, which allows expressing query as chronicles, but more generally any type of
CE. The method is able to produce the probability regarding the number of possible
occurrences of a chronicle on a given data-stream. Furthermore, we showed that us-
ing CSP, or if the CE representation might be represented into an automaton, it was
possible to express prior knowledge with observed behaviours. This work led to a pub-
lication in RuleML [RKL18]. In addition, we proposed, under small query restriction,
a faster inference method, close to model-checking techniques, that might be applied
for computing probability online.

Directions for future research

This work opens numerous questions and perspectives for future research.
The MLNs approach, for instance, despite it was not efficient for chronicle repre-

sentation, rise questions on the impact of a structure on SAT solving for local search
algorithm, and, in particular, for sampling on FOL problems. SAT-sample is an inter-
esting approach for such purposes, but is still based on one of the oldest algorithm
for local search and it may take benefit from more recent works. Recent works exist
on new algorithm for MLNs, but the search space problem remains an open questions
relative to complex properties such as the connectivity of a search space or the density
of solutions [Bib09; HS05].

As discussed in Chapter 6, many questions remains for our Markov chain approach
and its extensions. Notably, it involves specific restrictions in time representation such
as discretised instant and fixed duration between to instant that is not realistic for a
large amount of application. It would be interesting to find an approach that allevi-
ate these restrictions. Furthermore, the Markov chain approach requires to express
complex prior information represented by an automaton, or find all the streams for
an interval consistent with the information. Automaton representation is restrictive
for expressiveness or complex to produce and listing all streams is quickly intractable.

8Or similar representation like d-DNNFs.
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Investigating new methods for representation and computation of complex prior in-
formation seems necessary. About chronicle representation, it might be necessary to
prove the translation of every chronicle into automaton9. And further works should
be initiated to avoid combination of states for the creation of the Markov model M.

On general perspectives for CEP under uncertainty, integrating attributes into CEP
models for uncertainty, even without uncertainty considerations on attributes, remains
an open and complex question where current propositions bring important restrictions
and assumptions. But, it is obvious that such problematic will become increasingly ur-
gent to solve. Representation of uncertainty, and in particular differentiation of data
and pattern uncertainty, is an important candidate for further investigations and stud-
ies. It was already discussed in Chapter 2, but this subject leads to misconceptions and
confusions between data and patterns uncertainty. For instance, it seems particularly
curious that, despite the amount of research on pattern uncertainty, so few works are
interested into structure uncertainty and more precisely on the ability that a represen-
tation has to embed uncertainty. Another aspect of interest would be the time represen-
tation for uncertainty. In almost every work, time has a low impact on uncertainty. For
instance, automaton-based models usually does not consider that the delay between
two recognitions may have consequences for probability estimations (except [Mol+14]).
Same observations might be made for Markov model or Bayesian approaches, like our
approach, that usually assume fix durations or time independence.

9Note this work exists for representation into Petri nets in [Pie14]
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APPENDIXA
Definition of chronicle with the
Markov logic semantic

Sequence
Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ t2 < t3 ⇐⇒ OpSeq(c1, c2, t1, t2, t3, t4) (A.1)

Absence
OpAbs(c1, c2, t1, t2, t3, t4) ⇐⇒ Ch(c1, t1, t4) ∧ ¬OpDur(c1, c2, t1, t2, t3, t4) (A.2)

And
OpConj1(c1, c2, t1, t3, t4, t2) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t1 ≤ t3) ∧ (t4 ≤ t2)

OpConj2(c1, c2, t3, t1, t4, t2) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t3 < t1) ∧ (t4 ≤ t2)

OpConj3(c1, c2, t1, t3, t2, t4) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t1 ≤ t3) ∧ (t2 < t4)

OpConj4(c1, c2, t3, t1, t2, t4) ⇐⇒ Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ (t3 < t1) ∧ (t2 < t4)
(A.3)

OpConj1(c1, c2, t1, t3, t4, t2) ∨ · · · ∨ OpConj4(c1, c2, t1, t3, t4, t2)

=⇒ OpConj(c1, c2, t1, t2)
(A.4)

∃t3, t4 OpConj(c1, c2, t1, t2) =⇒
OpConj1(c1, c2, t1, t3, t4, t2) ∨ · · · ∨ OpConj4(c1, c2, t1, t3, t4, t2)

(A.5)
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A.1 Binary operators

During
Ch(c1, t1, t2) ∧ Ch(c2, t3, t4) ∧ t1 < t3 ∧ t2 < t4 ⇐⇒ OpDur(c1, c2, t1, t2, t3, t4) (A.6)

Equals
Ch(c1, t1, t2) ∧ Ch(c2, t1, t2) ⇐⇒ OpEq(c1, c2, t1, t2) (A.7)

Finishes
Ch(c1, t1, t3) ∧ Ch(c2, t2, t3) ∧ t2 < t1 ⇐⇒ OpFini(c1, c2, t1, t2, t3) (A.8)

Meets
Ch(c1, t1, t2) ∧ Ch(c2, t2, t3) ∧ t2 < t1 ⇐⇒ OpMeets(c1, c2, t1, t2, t3) (A.9)

Or
Ch(c1, t1, t2) ∨ Ch(c2, t1, t2) ⇐⇒ OpOr(c1, c2, t1, t2) (A.10)

Overlaps
Ch(c1, t1, t2)∧Ch(c2, t3, t4)∧ t1 < t3 ∧ t3 < t2 ∧ t2 < t4 ⇐⇒ OpOverl(c1, c2, t1, t2, t3, t4)

(A.11)

Starts
Ch(c1, t1, t2) ∧ Ch(c2, t1, t3) ∧ t2 < t3 ⇐⇒ OpStarts(c1, c2, t1, t2, t3, t4) (A.12)

A.2 Unary operators

At most
Ch(c, t1, t2) ∧ (t1 + δ < t2) ⇐⇒ OpAtMost(c, t1, t2, δ) (A.13)

At least
Ch(c, t1, t2) ∧ (t1 + δ > t2) ⇐⇒ OpAtLeast(c, t1, t2, δ) (A.14)
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Lasts
Ch(c, t1, t2) ∧ (t1 + δ = t2) ⇐⇒ OpLasts(c, t1, t2, δ) (A.15)

Then
Ch(c, t1, t2) ∧ (t2 + δ = t3) =⇒ OpThen(c, t2, t3, δ) (A.16)

∃t1OpThen(c, t2, t3, δ) =⇒ Ch(c, t1, t2) ∧ (t2 + δ = t3) (A.17)
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APPENDIXB
Drone model in ProbLog

The drone model program might be separated in three distinct parts:

• The temporal part describes the time mechanism that allows a system to change
its state from an instant to another.

• The subsystems part describes the rules of interactions between systems and
subsystems as described in Figure 1.5.

• The uncertainty part provides the probabilities associated to a change of state in
the system.

For convenience, we will present only a small part of the program that provide a good
insight of each different part. Consequently, rules presented for the subsystem and
the uncertainty part focus only on the RPS system representation.

B.1 Temporal part

%%------------------------------------------------------------------------------

maxTime(11).
sup(T,T2):- maxTime(T3),between(0,T3,T),T2 is T+1.
sup(T1,T2) :- sup(T1,T3),sup(T3,T2).
supeq(T1,T2) :- sup(T1,T2).
supeq(T,T).
oneDist(T,T2):- maxTime(T3),between(0,T3,T),T2 is T+1.
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%%%%%%%%%%%%%
% Chronicles operations
%%%%%%%%%%%%%
order(T1,T2,T3,T4) :- T1 =< T2, T3 =< T4.
seq(T1,T2,T3,T4) :- order(T1,T2,T3,T4), T2 < T3.
then(T1,T2,T3) :- T2 is T1 + T3.
during(T1,T2,T3,T4) :- sup(T1,T2), sup(T3, T4).

%%%%%%%%%
%State definition
%%%%%%%%%
state(M,0,S) :- start(M,S).
state(M,T,S) :- oneDist(TT,T), 0 < T,trans(M,TT,S2,S),state(M,TT,S2), S\=S2.
state(M,T,S) :- oneDist(TT,T), 0 < T, state(M,TT,S), \+ trans(M,TT,S,S2).

%%%%%%%%%
%Duration State
%Compute the duration a state stay active
%%%%%%%%%
durationState(M,0,S,0) :- start(M,S).
durationState(M,T,S,0):-oneDist(TT,T), 0 < T ,state(M,T,S), state(M,TT,SS).
durationState(M,T,S,D):-oneDist(TT,T), 0 < T ,state(M,T,S), state(M,TT,S),

oneDist(DD,D), 0 < D,durationState(M,TT,S,DD).

%%%%%%%%%
%% Transitions
%%%%%%%%%
acTrans(M,T1,Sfrom,A) :- state(M,T1,Sfrom), action(M,A,T1),

transitionChance(M,T1,Sfrom,A).
timeNoChange(M,T1,Inter,Sfrom):-durationState(M,T1,S,D), supeq(Inter,D).
timeNoChangeNoAc(M,T1,Inter,Sfrom,A):-durationState(M,T1,S,D), supeq(Inter,D),

\+acTrans(M,T1,Sfrom,A).

B.2 Subsystems part: Exemple from the RPS system

%%------------------------------------------------------------------------------
%%%%%%
%%RPS TC
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%to nominal
trans(rps_tc,T1,quick_recovery_procedure,nominal) :-

acTrans(rps_tc,T1,quick_recovery_procedure,ac_to_nominal).
trans(rps_tc,T1,long_recovery_procedure,nominal) :-

acTrans(rps_tc,T1,long_recovery_procedure,ac_to_nominal).

% to quick
trans(rps_tc,T1,nominal,quick_recovery_procedure) :-

acTrans(rps_tc,T1,nominal,ac_to_quick).

%to long
trans(rps_tc,T1,quick_recovery_procedure,long_recovery_procedure) :-

timeNoChangeNoAc(rps_tc,T1,2,quick_recovery_procedure,ac_to_nominal).

%lost
rps_tc_lost(T1) :-state(rps_tc,T1,quick_recovery_procedure).
rps_tc_lost(T1) :-state(rps_tc,T1,long_recovery_procedure).

%% Emited actions
action(atc_service,ac_to_rerouting,T1) :-oneDist(T2,T1),

action(rps_tc,ac_to_rerouting,T2),
state(rps_tc,T2,long_recovery_procedure),
state(rps_voice,T2,nominal).

%%%%%%
%% RPS-voice

%lost
rps_voice_lost(T1) :-state(rps_voice,T1,recovery_procedure).
rps_voice_lost(T1) :-state(rps_voice,T1,unrecovered).

%to nominal
trans(rps_voice,T1,recovery_procedure,nominal) :-

acTrans(rps_voice,T1,recovery_procedure,ac_to_nominal).
trans(rps_voice,T1,unrecovered,nominal) :-

acTrans(rps_voice,T1,unrecovered,ac_to_nominal).

%to recovery
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trans(rps_voice,T1,nominal,recovery_procedure) :-
acTrans(rps_voice,T1,nominal,ac_to_recovery).

%to unrecoverd
trans(rps_voice,T1,recovery_procedure,unrecovered) :-

timeNoChangeNoAc(rps_voice,T1,2,recovery_procedure,ac_to_nominal).

%% Emited actions
action(ua_code,ac_to_code_nominal,T1) :-oneDist(T2,T1),rps_voice_lost(T2),

state(rps_tc, T1,nominal),
state(rps_voice,T1,nominal).

action(ua,ac_code_7600,T1) :-oneDist(T2,T1),
state(rps_voice, T2,recovery_procedure),
state(rps_voice, T1,unrecovered),
state(rps_tc, T1,nominal).

action(ua,ac_code_7600,T1) :-oneDist(T2,T1),state(rps_voice, T2,unrecovered),
state(rps_voice, T1,unrecovered),
state(rps_tc, T1,nominal),
state(ua_code, T2,code_zz00).

%%%%%%
%% RPS-ATC

%to nominal
trans(rps_atc,T1,need_contact_urgency,nominal) :- state(rps_tc,T1,nominal),

state(rps_atc,T1,need_contact_urgency).
trans(rps_atc,T1,checking_tc,nominal) :- rps_tc_lost(T1),

timeNoChange(rps_atc,T1,2,checking_tc).
trans(rps_atc,T1,need_contact_invalidation,nominal) :-

state(rps_voice,T1,nominal),
state(rps_atc,T1,need_contact_invalidation).

trans(rps_atc,T1,need_contact_end,nominal) :-state(rps_voice,T1,nominal),
state(rps_atc,T1,need_contact_end).

%to need contact urgency
trans(rps_atc,T1,nominal,need_contact_urgency) :-

state(rps_tc,T1,long_recovery_procedure), state(rps_atc,T1,nominal).

%to contacted urgency
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trans(rps_atc,T1,need_contact_urgency,contacted_urgency) :-
state(rps_voice,T1,nominal),
state(rps_atc,T1,need_contact_urgency).

%to checking TC
trans(rps_atc,T1,nominal,checking_tc) :- state(rps_voice,T1,nominal),

acTrans(rps_atc,T1,nominal,ac_to_checking_tc).

%to need contact invalidation
trans(rps_atc,T1,checking_tc,need_contact_invalidation) :-

state(rps_tc,T1,nominal), timeNoChange(rps_atc,T1,5,checking_tc).

%to need contact end
trans(rps_atc,T1,contacted_urgency,need_contact_end) :-

state(rps_tc,T1,nominal),state(rps_atc,T1,contacted_urgency).

%% Emited actions
action(atc_service,ac_to_urgency,T1) :-oneDist(T2,T1),

state(rps_atc,T2,need_contact_urgency),
state(rps_atc,T1,contacted_urgency).

action(atc_service,ac_to_nominal,T1) :-oneDist(T2,T1),
state(rps_atc,T2,need_contact_end),
state(rps_atc,T1,nominal).

action(atc_service,ac_to_nominal,T1) :-oneDist(T2,T1),
state(rps_atc,T2,need_contact_invalidation),
state(rps_atc,T1,nominal).

action(ua_pilot,ac_to_nominal,T1) :-oneDist(T2,T1),
state(rps_atc,T2,need_contact_urgency),
state(rps_atc,T1,nominal).

%%%%%%%%%
% Chronicles
%%%%%%%%%

%RPS_TC
ch(from_rps_tc_nominal,TT,TT) :- state(rps_tc,TT,S), TT > 0,T is TT - 1,

state(rps_tc,T,nominal), S \= nominal.
ch(to_rps_tc_nominal,TT,TT) :- state(rps_tc,TT,nominal), TT > 0,T is TT - 1,

\+state(rps_tc,T,nominal).
ch(from_rps_tc_quick_recovery_procedure,TT,TT) :-state(rps_tc,TT,S), TT > 0,
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T is TT - 1,
state(rps_tc,T,quick_recovery),
S \= quick_recovery.

ch(to_rps_tc_quick_recovery_procedure,TT,TT) :-
state(rps_tc,TT,quick_recovery_procedure),
T is TT - 1,
\+state(rps_tc,T,quick_recovery_procedure).

ch(from_rps_tc_long_recovery_procedure,TT,TT) :-
state(rps_tc,TT,S),TT > 0,T is TT - 1, state(rps_tc,T,long_recovery_procedure),
S \= long_recovery_procedure.

ch(to_rps_tc_long_recovery_procedure,TT,TT) :-
state(rps_tc,TT,long_recovery_procedure),
TT > 0,T is TT - 1,
\+state(rps_tc,T,long_recovery_procedure).

% %RPS_ATC
ch(from_rps_atc_nominal_for_rps,T,T) :- state(rps_atc,TT,S), TT > 0,T is TT - 1,

state(rps_atc,T,nominal), S \= nominal.
ch(to_rps_atc_nominal_for_rps,T,T) :- state(rps_atc,TT,nominal), TT > 0,

T is TT - 1, \+state(rps_atc,T,nominal).
ch(from_rps_need_contact_atc_urgency,T,T) :-

state(rps_atc,TT,S), TT > 0,
T is TT - 1,
state(rps_atc,T,need_contact_urgency),
S \= need_contact_urgency.

ch(to_rps_need_contact_atc_urgency,T,T):-state(rps_atc,TT,need_contact_urgency),
TT > 0,
T is TT - 1,

\+state(rps_atc,T,need_contact_urgency).
ch(from_rps_checking_tc,T,T) :- state(rps_atc,TT,S), TT > 0,T is TT - 1,

state(rps_atc,T,checking_tc), S \= checking_tc.
ch(to_rps_checking_tc,T,T) :- state(rps_atc,TT,checking_tc), TT > 0,T is TT - 1,

\+state(rps_atc,T,checking_tc).
ch(from_rps_atc_concacted_urgency,T,T) :- state(rps_atc,TT,S), TT > 0,

T is TT - 1,
state(rps_atc,T,concacted_urgency),
S \= concacted_urgency.

ch(to_rps_atc_concacted_urgency,T,T) :- state(rps_atc,TT,concacted_urgency),
TT > 0,T is TT - 1,
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\+state(rps_atc,T,concacted_urgency).
ch(from_rps_need_contact_atc_invalidation_urgency,T,T) :-

state(rps_atc,TT,S),TT > 0,T is TT - 1,
state(rps_atc,T,need_contact_invalidation),
S \= need_contact_invalidation.

ch(to_rps_need_contact_atc_invalidation_urgency,T,T) :-
state(rps_atc,TT,need_contact_invalidation), TT > 0,T is TT - 1,
\+state(rps_atc,T,need_contact_invalidation).

ch(from_rps_need_contact_atc_end_urgency,T,T) :-
state(rps_atc,TT,S), TT > 0,
T is TT - 1,
state(rps_atc,T,need_contact_end), S \= need_contact_end.

ch(to_rps_need_contact_atc_end_urgency,T,T):-state(rps_atc,TT,need_contact_end),
TT > 0,T is TT - 1,

\+state(rps_atc,T,need_contact_end).

% %RPS_VOICE
ch(from_rps_nominal_voice,T,T) :- state(rps_voice,TT,S), TT > 0,T is TT - 1,

state(rps_voice,T,nominal), S \= nominal.
ch(to_rps_nominal_voice,T,T) :- state(rps_voice,TT,nominal), TT > 0,T is TT - 1,

\+state(rps_voice,T,nominal).
ch(from_rps_voice_recovery_procedure,T,T) :-

state(rps_voice,TT,S),TT > 0,T is TT - 1,
state(rps_voice,T,recovery_procedure), S \= recovery_procedure.

ch(to_rps_voice_recovery_procedure,T,T) :-
state(rps_voice,TT,recovery_procedure), TT > 0,T is TT - 1,
\+state(rps_voice,T,recovery_procedure).

ch(from_rps_voice_unrecovered,T,T) :- state(rps_voice,TT,S), TT > 0,T is TT - 1,
state(rps_voice,T,unrecovered),
S \= unrecovered.

ch(to_rps_voice_unrecovered,T,T) :- state(rps_voice,TT,unrecovered),
TT > 0,T is TT - 1,
\+state(rps_voice,T,unrecovered).

%%%%%%%%%
% Proba Actions
%%%%%%%%%

% RPS_TC
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0.9::rps_tc_loss_detection(T):- maxTime(T2),between(0,T2,T).
action(rps_tc,ac_to_quick,T) :- action(tc_failure,lost,T),

state(rps_tc,T,nominal),
rps_tc_loss_detection(T).

action(rps_tc,ac_to_nominal,T) :- action(tc_failure,back,T),
state(rps_tc,T,quick_recovery_procedure),
rps_tc_loss_detection(T).

action(rps_tc,ac_to_nominal,T) :- action(tc_failure,back,T),
state(rps_tc,T,long_recovery_procedure),
rps_tc_loss_detection(T).

%RPS_VOICE
0.9::rps_voice_loss_detection(T):- maxTime(T2),between(0,T2,T).
action(rps_voice,ac_to_recovery,T) :- action(voice_failure,lost,T),

state(rps_voice,T,nominal),
rps_voice_loss_detection(T).

action(rps_voice,ac_to_nominal,T) :- action(voice_failure,back,T),
state(rps_voice,T,recovery_procedure),
rps_voice_loss_detection(T).

action(rps_voice,ac_to_nominal,T) :- action(voice_failure,back,T),
state(rps_voice,T,unrecovered),
rps_voice_loss_detection(T).

%%%%%%%%%
% Start
%%%%%%%%%

start(rps_tc,nominal).
start(rps_voice,nominal).
start(rps_atc,nominal).

B.3 Uncertainty part

%%------------------------------------------------------------------------------
0.99::transitionChance(rps_tc,T1,quick_recovery_procedure,ac_to_nominal) :-

maxTime(T2),between(0,T2,T1).
0.99::transitionChance(rps_tc,T1,long_recovery_procedure,ac_to_nominal) :-

maxTime(T2),between(0,T2,T1).
0.99::transitionChance(rps_tc,T1,nominal,ac_to_quick) :-
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maxTime(T2),between(0,T2,T1).
0.99::transitionChance(rps_voice,T1,recovery_procedure,ac_to_nominal) :-

maxTime(T2),between(0,T2,T1).
0.99::transitionChance(rps_voice,T1,unrecovered,ac_to_nominal) :-

maxTime(T2),between(0,T2,T1).
0.99::transitionChance(rps_voice,T1,nominal,ac_to_recovery) :-

maxTime(T2),between(0,T2,T1).
0.99::transitionChance(rps_atc,T1,nominal,ac_to_checking_tc) :-

maxTime(T2),between(0,T2,T1).

transitionChance(tc_failure,T1,nominal,lost) :-maxTime(T2),between(0,T2,T1).
transitionChance(tc_failure,T1,lost,back) :-maxTime(T2),between(0,T2,T1).
transitionChance(voice_failure,T1,nominal,lost) :-maxTime(T2),between(0,T2,T1).
transitionChance(voice_failure,T1,lost,back) :-maxTime(T2),between(0,T2,T1).
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Résumé Le traitement d’événements complexes (Complex Event Processing – CEP) consiste en lanal-
yse de flux de données afin den extraire des motifs et comportements particuliers décrits, en général,
dans un formalisme logique. Dans lapproche classique, les données dun flux – ou événements – sont
supposées être lobservation complète et parfaite du système produisant ces événements. Cependant,
dans de nombreux cas, les moyens permettant la collecte de ces données, tels que des capteurs, ne sont
pas pour autant infaillibles et peuvent manquer la détection dun événement particulier ou au contraire
en produire. Dans cette thèse, nous nous sommes employé à étudier les modèles possibles de représenta-
tion de lincertain et, ainsi, offrir au CEP une robustesse vis-à-vis de cette incertitude ainsi que les outils
nécessaires pour permettre la reconnaissance de comportement complexe de façon pertinente les flux
dévénements en se basant sur le formalisme des chroniques. Dans cette optique, trois approches ont été
considérées. La première se base sur les réseaux logiques de Markov pour représenter la structure des
chroniques sous un ensemble de formules logiques adjointe dune valeur de confiance. Nous montrons
que ce modèle, bien que largement appliqué dans la littérature, est inapplicable pour une application
concrète au regard des dimensions dun tel problème. La seconde approche se basent sur des techniques
issues de la communauté SAT pour énumérer lensemble des solutions possibles dun problème donné
et ainsi produire une valeur de confiance pour la reconnaissance dune chronique exprimée, encore une
fois, sous une requête logique. Finalement, nous proposons une dernière approche basée sur les chaines
de Markov pour produire un ensemble déchantillons expliquant lévolution du modèle en accord avec
les données observées. Ces échantillons sont ensuite analysés par en système de reconnaissance pour
compter les occurrences dune chronique particulière.

Mots clés: Traitement d’événements complexes ; Gestion de l’incertitude ; Reconnaisance de com-
portement ; Réseaux logiques de Markov ; ProbLog ; Chaînes de Markov non-homogènes ; WalkSAT

Abstract Complex Event Processing (CEP) consists of the analysis of data-streams in order to extract
particular patterns and behaviours described, in general, in a logical formalism. In the classical approach,
data of a stream – or events – are supposed to be the complete and perfect observation of the system
producing these events. However, in many cases, the means for collecting such data, such as sensors,
are not infallible and may miss the detection of a particular event or on the contrary produce. In this
thesis, we have studied the possible models of representation of uncertainty and, thus, to offer the
CEP a robustness to this uncertainty as well as the necessary tools to allow the recognition of complex
behaviours based on the chronicle formalism. In this perspective, three approaches have been considered.
The first one is based on Markov logical networks to represent the structure of the chronicles under a
set of logical formulas of a confidence value. We show that this model, although widely applied in the
literature, is inapplicable for a realistic application with regard to the dimensions of such a problem. The
second approach is based on techniques from the SAT community to enumerate all possible solutions of a
given problem and thus to produce a confidence value for the recognition of a chronicle expressed, again,
under a logical structure. Finally, we propose a last approach based on the Markov chains to produce a
set of samples explaining the evolution of the model in agreement with the observed data. These samples
are then analysed by a recognition system to count the occurrences of a particular chronicle.

Keywords: Complex event processing; Behaviour recognition; Markov logic networks; Non-homo-
geneous Markov model; ProbLog; WalkSAT






