Caenorhabditis elegans un modèle d’étude des différents compartiments du noyau : de l’étude d’un stress du nucléole par inhibition de la voie de neddylation à la mesure de la compaction de la chromatine in vivo
Auteur / Autrice : | Aurélien Perrin |
Direction : | Dimitris Xirodimas |
Type : | Thèse de doctorat |
Discipline(s) : | Biologie Santé |
Date : | Soutenance le 13/11/2018 |
Etablissement(s) : | Montpellier |
Ecole(s) doctorale(s) : | Sciences Chimiques et Biologiques pour la Santé (Montpellier ; Ecole Doctorale ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de Recherche en Biologie cellulaire de Montpellier (Montpellier) |
Jury : | Président / Présidente : John De Vos |
Examinateurs / Examinatrices : Dimitris Xirodimas, John De Vos, Valérie Robert, Lionel Pintard | |
Rapporteurs / Rapporteuses : Valérie Robert, Lionel Pintard |
Mots clés
Résumé
NEDD8, molécule de la famille de l’ubiquitine est essentielle au développement, à la croissance et à la viabilité d’un organisme, de plus c’est une cible prometteuse en thérapeutique. Nous avons découvert que l’inhibiteur spécifique de la NEDDylation, MLN4924 altère la morphologie sans fragmentation et augmente la surface du nucléole de cellules humaines et de noyaux de la lignée germinale de Caenorhabditis elegans. Une approche de protéomique quantitative (SILAC) combiné à l’analyse de la production des ARNr et des ribosomes montrent que MLN4924 change la composition protéique du nucléole sans affecter l’activité transcriptionnelle de l’ARN pol I. Notre analyse montre que MLN4924 active p53 par la voie RPL11/RPL5-Mdm2 caractéristique d’un stress du nucléole. Cette étude identifie le nucléole comme une cible intéressante dans l’utilisation d’inhibiteurs de la NEDDylation et apporte un nouveau mécanisme d’activation de p53 par inhibition de la voie NEDD8.Dans une seconde étude nous avons adapté la méthode de FLIM-FRET (« Fluorescence Lifetime Imaging Microscopy – Förster Resonance Energy Transfer ») à l’étude de la compaction de la chromatine à l’échelle du nanomètre dans un organisme vivant. Le nématode Caenorhabditis elegans s’est révélé être un modèle de choix. Au sein des chromosomes méiotiques, nous avons identifié différentes régions de compaction, de niveau variable par mesure du FRET entre histones fusionnées à des protéines fluorescentes. Par une approche originale d’ARN interférence et injection d’un « extra-chromosome » nous avons défini l’architecture à une nano-échelle de différents états de l’hétérochromatine et montré que cette organisation est contrôlée par les protéines HP1 « Heterochromatin Protein 1 » et SETDB1, une protéine « H3-Lysine 9 methyl transferase ». Nous avons également montré que la compaction de l’hétérochromatine est dépendante des condensines I et II et plus particulièrement la condensine I contrôle l’état faiblement compacté de la chromatine.Nos travaux ont confirmé que C. elegans est un modèle d’intérêt majeur pour l’étude des compartiments nucléaires et parfaitement adapté pour des études pré-clinique.