Nanostructures 2D et supports d’oxydes métalliques pour des cathodes de piles à combustible à faible teneur en platine
Auteur / Autrice : | Fatima Haidar |
Direction : | Deborah Jacqueline Jones, Marie-Christine Record, Sara Cavaliere-Jaricot |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie et physico-chimie des matériaux |
Date : | Soutenance le 19/12/2018 |
Etablissement(s) : | Montpellier |
Ecole(s) doctorale(s) : | École doctorale Sciences Chimiques Balard (Montpellier ; 2003-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....) |
Jury : | Président / Présidente : Annie Pradel |
Examinateurs / Examinatrices : Deborah Jacqueline Jones, Marie-Christine Record, Sara Cavaliere-Jaricot, Annie Pradel, Christian Beauger, Henri Perez, Têko Wilhelmin Napporn, Jacques Rozière | |
Rapporteurs / Rapporteuses : Christian Beauger, Henri Perez |
Résumé
Les piles à combustible à membrane échangeuse de protons sont des dispositifs de conversion de l’énergie propre et efficace. Les gammes de puissance accessibles permettent leur utilisation dans le domaine de transport et des applications stationnaires. Il existe deux verrous technologiques à lever pour le déploiement de la cathode:i) Diminution de la quantité de platine dans le catalyseur.ii) l'amélioration de la stabilité du support de catalyseur à haut potentiel. Dans ce travail, nous présentons deux stratégies qui permettent de faire face à ces problématiques et améliorer les performances et la durabilité des cathodes: développer de nouveaux électrocatalyseurs à très faible quantité de platine et des supports à base de matériaux résistants à la corrosion.Afin de réduire la quantité de platine dans le catalyseur, nous avons développé des nanostructures fines de platine, qui permettent une exploitation électrocatalytique maximale et une quantité minimale de métal noble. Pour atteindre cet objectif, nous avons utilisé une méthode électrochimique basée sur le dépôt sous potentiel et le déplacement galvanique. Les nanostructures fines déposées sur le substrat modèle ont été caractérisées électrochimiquement ainsi que par des techniques microscopiques et d'analyse élémentaire.Pour réaliser un support résistant à la corrosion, notre approche a consisté en le remplacement du carbone noir conventionnel par un matériau conducteur d’oxyde d'étain dopé. Les matériaux à base de SnO2 ont démontré leur efficacité comme support électrochimique stable mais également efficace pour la réaction de réduction de l'oxygène. Dans cette étude, l’oxyde d’étain dopé au tantale a été préparé par électrofilage suivi d'une étape de calcination, permettent ainsi d’obtenir des fibres de morphologie tubulaires. Ces fibres ont été utilisées comme support de nanoparticules de platine préparées par la méthode de polyol assistée par micro-ondes, puis caractérisées pour leurs propriétés physico-chimiques et électrocatalytiques. En particulier, la stabilité aux cyclage en potentiel a été évaluée par analyse électrochimique ex situ. La possibilité d’associer l'électrocatalyseur à surface étendue avec les supports résistants à la corrosion pour obtenir des cathodes actives et durables est en cours.