Thèse soutenue

Construction d'une biopile microbienne à un compartiment avec une cathode à air

FR  |  
EN
Auteur / Autrice : Widya Ernayati Kosimaningrum
Direction : Christophe InnocentB. BuchariMarc Cretin
Type : Thèse de doctorat
Discipline(s) : Chimie et physico-chimie des matériaux
Date : Soutenance le 13/11/2018
Etablissement(s) : Montpellier en cotutelle avec Institut teknologi Bandung
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-....)
Partenaire(s) de recherche : Laboratoire : Institut Européen des membranes (Montpellier)
Jury : Président / Présidente : Eniya Listiani Dewi
Examinateurs / Examinatrices : Christophe Innocent, B. Buchari, Marc Cretin, Eniya Listiani Dewi, Maxime Pontié, Mathieu Étienne, Laurence Soussan, Henry Setiyanto
Rapporteurs / Rapporteuses : Maxime Pontié

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La pile à combustible microbienne, MFC, est un bioengine qui associe respectivement le principe biochimique et le principe électrochimique pour extraire les électrons stockés dans la matière organique et les transformer en électricité. Dans un MFC, des microbes électroactifs vivants, avec son système enzymatique complet, sont utilisés pour biocatalyser l'oxydation du combustible organique; une anode est introduite artificiellement pour détourner les électrons, ce qui a eu pour résultat le système respiratoire bactérien; et à l'opposé, une cathode entraîne le flux d'électrons qui est ensuite commuté sur le courant électrique. Les microbes électroactifs se répandent dans de nombreuses sources telles que le sol, le compost, les boues, les eaux usées, etc. Les aliments pour animaux, les combustibles organiques et / ou d'autres nutriments peuvent également être abondamment présents dans leurs sources matricielles et dans de nombreuses autres sources inestimables, couramment disponibles dans la vie quotidienne. L'abondance bactérienne et le carburant organique illimité sont les deux raisons attrayantes pour le développement d'une source d'énergie durable telle que le MFC, qui attire également notre attention dans cette recherche. Ici, nous avons développé MFC, double chambre (DCMFC) et chambre unique (SCMFC), alimentés par compost de jardin comme source électroactive et acétate de carburant. Pour des raisons de durabilité et d’autres avantages, c’est-à-dire praticables et respectueux de l’environnement, nous nous sommes principalement concentrés sur le SCMFC avec un système de cathodes respiratoires. La problématique commune du SCMFC est la production d’énergie limitée due principalement à la cinétique lente de la réaction de réduction de l’oxygène (ORR) dans la partie cathodique. Par conséquent, il est important de mettre au point le matériau de la cathode respiratoire qui présente une activité de catalyse appropriée vis-à-vis de la perte de réponse optique pour surmonter cette limitation. Le feutre de carbone (CF) est le matériau de support choisi qui convient à la fabrication de cathodes à respiration aérienne. Alors que le platine (Pt) et l’oxyde de manganèse (MnOx), respectivement, en tant que classe de catalyseur suprême et de second rang, ont été développés sur CF grâce à une méthode simple d’électrodéposition. Les matériaux résultants, dénommés ACF@Pt et ACF@MnOx, ont été caractérisés de manière complète par des méthodes électrochimiques et physicochimiques afin de déterminer leurs performances électrocatalytiques, supportant ainsi l’application de cathodes respiratoires. En conséquence, nous avons développé deux principaux types de cathodes respiratoires, à savoir ACF@Pt et ACF@MnOx, appliquées avec succès dans le SCMFC alimenté par du compost de jardin avec une densité de puissance respective de 140 mW m-2 et 110 mW m-2. De plus, les deux matériaux développés révèlent également des applications prometteuses. Par exemple, ACF@Pt a été utilisé comme anode de MFC, à la fois dans DCMFC et SCMFC, et a amélioré la densité de puissance jusqu'à 300 mW m-2. Fait intéressant, il est également montré comme un excellent électrocatalyseur dans la réaction de dégagement d’hydrogène, HER. Alors que le matériau ACF@MnOx présente un électrocatalyseur prometteur dans un système de type électro-Fenton à la minéralisation d'un matériau biréfractif, c'est-à-dire l'un des constituants polluants dangereux des eaux usées.