Thèse soutenue

Solutions pour l'amélioration des performances des miroirs de courant dynamiques CMOS : application à la conception de source de courant pour des dispositifs biomédicaux.

FR  |  
EN
Auteur / Autrice : Mohan Julien
Direction : Guy Cathébras
Type : Thèse de doctorat
Discipline(s) : Systèmes automatiques et micro-électroniques
Date : Soutenance le 23/11/2018
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : Ian O'Connor
Examinateurs / Examinatrices : Guy Cathébras, Ian O'Connor, Sylvie Renaud, Hervé Barthélemy, Sami Ajram, Daniel Dzahini, Serge Bernard, Fabien Soulier
Rapporteurs / Rapporteuses : Sylvie Renaud, Hervé Barthélemy

Résumé

FR  |  
EN

Ce manuscrit porte sur l’analyse, les méthodes de conception et la recherche de nouvelles structures de sources de courant, en se focalisant principalement sur les miroirs de courant, source la plus élémentaire. Le dépassement des limites actuelles pour l’optimisation du compromis vitesse-précision-consommation est l’objectif majeur des travaux présentés.La première partie est consacrée à l’étude de l’origine de ces limites et dresse l’état de l'art des structures de miroir de courant CMOS. Sont ensuite étudiées plus en détails, les possibilités offertes par les miroirs à entrée active. Une des premières contributions de nos travaux de recherche a été de proposer un formalisme dédié à l’étude et à l’implémentation de ce type de miroir, suivi de propositions d’amélioration à coût minimum de la topologie classique.Le développement d’une nouvelle approche de conception utilisant un principe de rétroaction non-linéaire en mode courant constitue la contribution majeure de cette thèse. La rétroaction est implémentée grâce à un convoyeur de courant de seconde génération dédié, très faible consommation et conçu pour avoir un comportement volontairement non-linéaire. Couplée avec des techniques classiques de régulation cascode pour une copie en courant de haute-précision, cette topologie constitue une source de courant élémentaire compétitive pour la réalisation de systèmes à haut niveau de performance.L'approche est mise en œuvre puis validée par la conception, en technologie CMOS 180nm, de deux circuits dédiés à la génération des courants dans les puces de stimulation neurale. L’ensemble des résultats obtenus dans ces dernières études démontre, qu’il est possible de dépasser les limites actuelles du compromis vitesse-précision-consommation, en se basant sur la stratégie de conception et les nouvelles topologies de miroirs à entrée active proposées.