Thèse soutenue

Development of a Numerical Tool for Gravimetry and Gradiometry Data Processing and Interpretation : application to GOCE Observations

FR  |  
EN
Auteur / Autrice : Anita Thea Saraswati
Direction : Rodolphe CattinStéphane Mazzotti
Type : Thèse de doctorat
Discipline(s) : Géosciences
Date : Soutenance le 27/11/2018
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : GAIA (Montpellier ; École Doctorale ; 2015-...)
Partenaire(s) de recherche : Laboratoire : Géosciences (Montpellier)
Jury : Président / Présidente : Mioara Mandea-Alexandrescu
Examinateurs / Examinatrices : Rodolphe Cattin, Stéphane Mazzotti, Mioara Mandea-Alexandrescu, Michel Diament, Guillaume Ramillien, Olivier Francis
Rapporteurs / Rapporteuses : Michel Diament, Guillaume Ramillien

Résumé

FR  |  
EN

Aujourd’hui, la communauté scientifique dispose de jeux de données gravimétriques avec une précision et une résolution spatiale sans précédent qui améliorent nos connaissances du champ gravitationnel terrestre à différentes échelles et longueurs d’ondes, obtenues de mesures du sol à des satellites. Parallèlement à la gravimétrie, l’avancement des observations par satellite fournit à la communauté des modèles d’élévation numérique plus détaillés pour refléter la géométrie de la structure terrestre. Ensemble, ces nouveaux jeux de données offrent une excellente occasion de mieux comprendre les structures et la dynamique de la Terre à l’échelle locale, régionale et mondiale. L'utilisation et l'interprétation de ces données de haute qualité exigent le raffinement des approches standards dans le traitement et l'analyse des données liées à la gravité. Cette thèse consiste en une série d’études visant à améliorer la précision du traitement des données de gravité et gravité de gravité gradients pour les études géodynamiques. Pour ce faire, nous développons un outil, appelé GEEC (Gal Eötvös Earth Calculator), pour calculer précisément les effets gravimétriques dues à tout corps de masse, indépendamment de sa géométrie et de sa distance par rapport aux mesures. Les effets de gravité et des gravité gradients sont calculés analytiquement en utilisant la solution intégrale linéaire d'un polyèdre irrégulier. Les validations aux échelles locale, régionale et mondiale confirment la robustesse des performances du GEEC, où la résolution du modèle, qui dépend à la fois de la taille de la masse corporelle et de sa distance par rapport au point de mesure, contrôle fortement la précision des résultats. Nous présentons une application pour évaluer les paramètres optimaux dans le calcul des gradients de gravité et de gravité dus aux variations de topographie. La topographie joue un rôle majeur dans l'attraction gravitationnelle de la Terre; par conséquent, l'estimation des effets topographiques doit être soigneusement prise en compte dans le traitement des données gravimétriques, en particulier dans les zones de topographie accidentée ou à grande échelle. Pour les études de gravité de haute précision à l'échelle mondiale, le processus de correction de la topographie doit prendre en compte l'effet topographique de la Terre entière. Mais pour les applications locales à régionales basées sur des variations relatives à l'intérieur de la zone, nous montrons que la topographie tronquée à une distance spécifique peut être adéquate, même si ignorer la topographie de cette distance peut générer des erreurs. Pour soutenir ces arguments, nous montrons les relations entre les erreurs relatives à la gravité, la distance de troncature de la topographie et l'étendue de la zone d'étude. Enfin, nous abordons le problème: les mesures GOCE sont-elles pertinentes pour obtenir une image détaillée de la structure d'une plaque de subduction, y compris sa géométrie et ses variations latérales? Les résultats du calcul des avec des modèles de subduction synthétiques calculés à l’altitude moyenne du GOCE (255 km) démontrent que les bords de subduction et les variations latérales du pendage produisent des variations des gradients détectables avec le jeu de données GOCE. Dans l'application à la zone de subduction Izu-Bonin-Mariana (IBM), la topographie et les effets bathymétriques ont été supprimés avec succès. Cependant, dans l'application au cas réel de la zone de subduction Izu-Bonin-Mariana, les caractéristiques géométriques du second ordre du slab sont difficiles à détecter en raison de la présence des effets crustaux restants. Ceci est dû à l'imprécision du modèle crustal global existant qui est utilisée, qui conduit à une élimination impropre de l'effet crustal.