Thèse soutenue

Approche expérimentale et numérique de l'usure du carbure de tungstène sous impact-glissement

FR  |  
EN
Auteur / Autrice : Marième Fall
Direction : Philippe KapsaVincent Fridrici
Type : Thèse de doctorat
Discipline(s) : Génie des matériaux
Date : Soutenance le 04/04/2018
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Laboratoire : Laboratoire de tribologie et de dynamique des systèmes
Jury : Président / Présidente : Yannick Desplanques
Examinateurs / Examinatrices : Philippe Kapsa, Vincent Fridrici, Gaylord Guillonneau, Amílcar Ramalho
Rapporteurs / Rapporteuses : Cécile Langlade, Christine Boher

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le sujet de ce mémoire de thèse concerne l’usure des inserts en carbure de tungstène soumis à des sollicitations d’impact-glissement. Ces inserts situés sur la tête de coupe de tunneliers permettent d’excaver le sol. Ces carbures sont caractérisés par une dureté élevée et une résistance à l’usure importante ; néanmoins, ils sont soumis à des conditions d’excavation sévères qui finissent par les endommager. Il est donc primordial d’augmenter leur résistance à l’usure afin d’augmenter leur durée de vie dans le but de réduire les opérations de remplacement et les coûts. Une étude expérimentale avec un banc d’impact-glissement permet de solliciter les carbures de tungstène dans des conditions proches de celles rencontrées lors de l’excavation. Nous analysons trois carbures de tungstène avec des propriétés et des compositions différentes. Un des trois carbures sert de référence et est utilisé industriellement. Les deux autres carbures ont été développés récemment. Une bille, en acier 100Cr6 ou en carbure de silicium, est soumise à un déplacement vertical, et vient impacter l’échantillon en carbure de tungstène. Le déplacement de deux lames flexibles, situées sous l’échantillon impacté, permet de générer le glissement au moment de l’impact. L’abrasion et l’adhésion sont les principaux mécanismes d’usure, accompagnés de la formation de fissures dans le cas du carbure le plus fragile. Le volume d’usure dépend fortement de l’énergie d’impact, du nombre d’impacts, de l’angle d’impact, de la nature des matériaux au contact et de l’environnement de contact. Le carbure de référence s’use le plus parmi les trois carbures. De plus, le glissement contribue à augmenter l’usure et la bille en SiC forme une couche sacrificielle avec l’un des carbures développé récemment. La présence d’argon au contact tend à réduire l’adhésion et, par conséquent, l’usure est moins sévère. Parallèlement aux tests expérimentaux, une analyse numérique par éléments finis sous Abaqus/Explicit est réalisée. Un modèle 3D représentant le contact entre la bille et le plan incliné a été développé en mettant en avant la dynamique du contact. Cela nous donne accès à des grandeurs non déterminées expérimentalement (distance glissée, énergie dissipée par frottement, énergie de déformation plastique, contraintes au contact) et permet ainsi de mieux comprendre les mécanismes mis en jeu lors du contact. Les coefficients énergétiques d’usure obtenus expérimentalement sont mis en corrélation avec les énergies dissipées par frottement et les énergies de déformation plastique. La distribution des contraintes de traction et de compression permet d’établir un lien avec la formation des fissures pour le carbure le plus fragile. Cette approche expérimentale combinée à la simulation numérique nous permet de mieux comprendre les phénomènes d’endommagement qui se déroulent au contact de l’insert.