Thèse soutenue

Matériaux sans plomb micro structurés pour la récupération d'énergie

FR  |  
EN
Auteur / Autrice : Baba Wague
Direction : Yves RobachBertrand Vilquin
Type : Thèse de doctorat
Discipline(s) : Matériaux
Date : Soutenance le 30/01/2018
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Matériaux de Lyon (Villeurbanne ; 1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Laboratoire : INL - Institut des Nanotechnologies de Lyon, UMR5270 (Rhône) - Institut des nanotechnologies de Lyon
Jury : Président / Présidente : Pascale Roy
Examinateurs / Examinatrices : Yves Robach, Bertrand Vilquin, Damien Deleruyelle
Rapporteurs / Rapporteuses : Arnaud Fouchet, Silvana Mercone

Résumé

FR  |  
EN

Avec le développement des circuits intégrés à très faible consommation d'énergie, la nécessité de réduire les coûts d'exploitation des dispositifs électroniques embarqués et l'utilisation des piles usagées constituant une menace pour l'environnement, le concept de récupération d'énergie a acquis un nouvel intérêt. La récupération d'énergie couvre le piégeage de nombreuses sources d'énergie ambiantes perdues et leur conversion en énergie électrique. Une large gamme de dispositifs de récupération d'énergie des vibrations mécaniques a été développée. Une configuration commune consiste en un système de masse-ressort avec un matériau piézoélectrique en parallèle avec le ressort pour convertir une partie de l'énergie mécanique pendant les oscillations en énergie électrique. Jusqu'à présent, le matériau le plus utilisé pour la récupération d'énergie piézoélectrique est le titano-zirconate de plomb (PbZr1-xTixO3) (PZT). Le PZT est le matériau de référence pour les applications microsystème électromécanique-MEMS (MechanoElectroMechanicalSystems) dans le domaine de la récupération d'énergie. Les matériaux piézoélectriques à base de plomb tels que le PZT et niobate-titanate de plomb-magnésium (PMN-PT) offrent des facteurs de couplage piézoélectriques supérieurs à ceux d'autres matériaux. Cependant, malgré ses excellentes propriétés électriques (diélectriques, ferroélectriques et piézoélectriques), le PZT et d'autres matériaux à base de plomb devraient bientôt être remplacés par des composés sans plomb, à cause des problèmes environnementaux. Notre travail vise à développer des matériaux sans plomb de haute performance pour la récupération d'énergie par vibration mécanique. Nous nous sommes intéressés à la fabrication et la caractérisation des dispositifs MEMS pour la récupération d'énergie en utilisant les matériaux piézoélectriques sans plomb tels que le nitrure d'aluminium (AIN), le titanate de baryum BaTiO3 (BTO) et la ferrite de bismuth BiFeO3 (BFO). Les matériaux piézoélectriques PZT (utilisé comme référence à cause ses coefficients piézoélectriques élevés), BTO, BFO et AIN ont été déposés en utilisant des méthodes de dépôt telles que la pulvérisation cathodique et le dépôt sol-gel, conduisant à des films minces à grande échelle, homogènes et de haute densité, avec une épaisseur contrôlée avec précision. Le dépôt de films de 300 nm d'épaisseur par pulvérisation cathodique ou par Sol-Gel a été réalisé sur du substrat de SrTiO3 (STO) recouvert d'une électrode inférieure de SrRuO3 (SRO), qui est le substrat de référence pour les oxydes fonctionnels (PZT, BTO et BFO), et sur un substrat de silicium recouvert de platine, qui est le modèle industriel classique. Quels que soient les matériaux piézoélectriques, nous avons obtenu des films épitaxiés sur substrat de STO et texturés sur substrat de silicium. Des mesures structurales, électriques et piézoélectriques sur les films de BTO, AIN et PZT montrent qu'ils ont de bonnes propriétés physiques en accord avec la littérature.