Thèse soutenue

Opérateur de Laplace–Beltrami discret sur les surfaces digitales

FR  |  
EN
Auteur / Autrice : Thomas Caissard
Direction : David CoeurjollyJacques-Olivier LachaudTristan Roussillon
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 13/12/2018
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....) - Geometry Processing and Constrained Optimization
établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Jury : Président / Présidente : Raphaëlle Chaine
Examinateurs / Examinatrices : David Coeurjolly, Tristan Roussillon, David Cohen-Steiner
Rapporteurs / Rapporteuses : Isabelle Debled-Rennesson, Nicolas Passat

Résumé

FR  |  
EN

La problématique centrale de cette thèse est l'élaboration d'un opérateur de Laplace--Beltrami discret sur les surfaces digitales. Ces surfaces proviennent de la théorie de la géométrie discrète, c’est-à-dire la géométrie qui s'intéresse à des sous-ensembles des entiers relatifs. Nous nous plaçons ici dans un cadre théorique où les surfaces digitales sont le résultat d'une approximation, ou processus de discrétisation, d'une surface continue sous-jacente. Cette méthode permet à la fois de prouver des théorèmes de convergence des quantités discrètes vers les quantités continues, mais aussi, par des analyses numériques, de confirmer expérimentalement ces résultats. Pour la discrétisation de l’opérateur, nous faisons face à deux problèmes : d'un côté, notre surface n'est qu'une approximation de la surface continue sous-jacente, et de l'autre côté, l'estimation triviale de quantités géométriques sur la surface digitale ne nous apporte pas en général une bonne estimation de cette quantité. Nous possédons déjà des réponses au second problème : ces dernières années, de nombreux articles se sont attachés à développer des méthodes pour approximer certaines quantités géométriques sur les surfaces digitales (comme par exemple les normales ou bien la courbure), méthodes que nous décrirons dans cette thèse. Ces nouvelles techniques d'approximation nous permettent d'injecter des informations de mesure sur les éléments de notre surface. Nous utilisons donc l'estimation de normales pour répondre au premier problème, qui nous permet en fait d'approximer de façon précise le plan tangent en un point de la surface et, via une méthode d'intégration, palier à des problèmes topologiques liées à la surface discrète. Nous présentons un résultat théorique de convergence du nouvel opérateur discrétisé, puis nous illustrons ensuite ses propriétés à l’aide d’une analyse numérique de l’opérateur. Nous effectuons une comparaison détaillée du nouvel opérateur par rapport à ceux de la littérature adaptés sur les surfaces digitales, ce qui nous permet, au moins pour la convergence, de montrer que seul notre opérateur possède cette propriété. Nous illustrons également l’opérateur via quelques unes de ces applications comme sa décomposition spectrale ou bien encore le flot de courbure moyenne