Synthèse d'acides carboxyliques à partir de substrats oxygénés, de CO2 et de H2
Auteur / Autrice : | Matilde Valeria Solmi |
Direction : | Elsje Alessandra Quadrelli |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 17/12/2018 |
Etablissement(s) : | Lyon en cotutelle avec Rheinisch-westfälische technische Hochschule (Aix-la-Chapelle, Allemagne) |
Ecole(s) doctorale(s) : | École doctorale de Chimie (Lyon ; 1995-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....) |
Laboratoire : Laboratoire de Chimie, Catalyse, Polymères et Procédés | |
Jury : | Président / Présidente : Bruno Andrioletti |
Examinateurs / Examinatrices : Elsje Alessandra Quadrelli, Stefania Albonetti, Francesco Di Renzo, Walter Leitner, Regina Palkovits | |
Rapporteur / Rapporteuse : Carmen Claver, Gabriele Centi |
Mots clés
Mots clés contrôlés
Résumé
Les acides carboxyliques aliphatiques sont utilisés dans de nombreux secteurs industriels et leur importance économique augmente. Ils sont actuellement produits en grande quantité, grâce à des procédés utilisant le C0 qui est principalement non- renouvelable. L'anhydride carbonique est une molécule potentiellement écologique, renouvelable et abondante. Cette thèse décrit l'étude et l'optimisation d'un système catalytique homogène de Rh, utilisé pour produire des acides carboxyliques aliphatiques à partir de substrats oxygénés, C02 et H2. Le système consiste en un précurseur de Rh, un additif à base d'iodure et un ligand PPh3, fonctionnant dans un réacteur discontinu sous une pression de C02 et de H2. Les conditions de réaction ont été optimisées pour chaque classe de substrats étudiés: alcools primaires et secondaires, cétones, aldéhydes et époxydes. 30 molécules différentes ont été converties en acides carboxyliques, conduisant à des rendements jusqu'à 80%. En plus, le système a été étudié avec une approche de « Design of Experiment », ce qui a permis d'obtenir des informations supplémentaires concernant les paramètres étudiés. Le mécanisme de réaction et les espèces catalytiques actives ont été étudiés par différentes manipulations comme des réactions compétitives, des expériences de RMN et l'utilisation de molécules marquées. La réaction est composée de transformations non catalytiques et de deux étapes catalytiques. La réaction se déroule à travers une réaction de reverse Water Gas Shift (rWGSR) transformant le C02 et l'H2 en C0 et H20, qui sont consommés dans l'hydrocarboxylation suivante de l'alcène formé in situ pour livrer l'acide carboxylique. Le système catalytique est similaire aux catalyseurs traditionnels à base du Rh pour les réactions de carbonylation et de Water Gas Shift. Le PPh3 est nécessaire pour fournir des ligands supplémentaires, permettant au catalyseur de fonctionner avec une quantité minimale de ligand toxique de C0. En plus, un système catalytique hétérogène a été étudié pour la même réaction. « Single Atom Catalysts » (SACs) reçoit beaucoup plus d'attention que les solutions catalytiques, car il présente à la fois les avantages des catalyseurs homogènes (sélectivité, haute activité) et des catalyseurs hétérogènes (séparation et recyclage faciles). Des atomes de rhodium simples dispersés sur du graphène dopé avec l'N ont été synthétisés et caractérisés, obtenant des informations concernant la structure chimique et physique du matériau. Finalement, ils ont été testés ainsi que les catalyseurs pour l'activation du C02, la production d'acides carboxyliques, les réactions d'hydrogénation et d'hydrogénolyse