Thèse soutenue

Équation d’état de la matière à densité supranucléaire et application à l’émission thermique des étoiles compactes

FR  |  
EN
Auteur / Autrice : Nicolas Baillot d'Étivaux
Direction : Jérôme Margueron
Type : Thèse de doctorat
Discipline(s) : Astrophysique nucléaire
Date : Soutenance le 04/10/2018
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut de physique nucléaire (Villeurbanne, Rhône)
Jury : Président / Présidente : Guy Chanfray
Examinateurs / Examinatrices : Jérôme Margueron, Natalie Webb, Hubert Hansen
Rapporteurs / Rapporteuses : Micaela Oertel, Elias Khan

Résumé

FR  |  
EN

Cette thèse porte sur la modélisation théorique de l'équation d’état (EE) décrivant la matière nucléaire présente dans le coeur des étoiles à neutrons (EN), sous l'hypothèse qu'aucune transition de phase ne s'y produise. Nous utilisons un méta-modèle permettant i) d’incorporer directement les connaissances en physique nucléaire sous la forme de paramètres empiriques tels que la densité de saturation nucléaire, l’incompressibilité, l’énergie de symétrie; ii) de reproduire la plupart des modèles nucléoniques existants; et iii) d’explorer les régions inconnues à haute densité de façon la plus large possible. Pour chaque EE, nous déterminons un ensemble de solutions pour la masse et le rayon des EN, et nous effectuons une première sélection des EE compatibles avec la stabilité et la causalité de la matière nucléaire, ainsi que la masse maximale connues des EN. Nous confrontons ensuite ces EE aux observations d’émission thermique dans la gamme des rayons-X pour 7 EN soigneusement choisies. Pour la première fois, la modélisation théorique des EE est directement introduite dans l’analyse des données. Nous utilisons les dernières mesures effectuées par GAIA II pour fixer la distance des EN. Les paramètres du modèle d’émission thermique et de l’EE sont déterminés selon une méthode Bayésienne basée sur un algorithme Monte-Carlo par Chaîne de Markov. Nous déterminons ainsi la température de surface, la masse et le rayon des EN, ainsi que sur la valeur de certains paramètres empiriques tels que la dépendance en densité de l'énergie de symétrie (Lsym), la contribution isovectorielle au module d’incompressibilité (Ksym) ou encore le paramètre de distorsion isoscalaire (Qsat)