
 
 
 
 
 
 
 

 
 
 
 

AVERTISSEMENT 
 
 

Ce document est le fruit d'un long travail approuvé par le jury de 
soutenance et mis à disposition de l'ensemble de la 
communauté universitaire élargie. 
 
Il est soumis à la propriété intellectuelle de l'auteur. Ceci 
implique une obligation de citation et de référencement lors de 
l’utilisation de ce document. 
 
D'autre part, toute contrefaçon, plagiat, reproduction  illicite 
encourt une poursuite pénale. 
 
Contact : ddoc-theses-contact@univ-lorraine.fr 
 
 
 
 
 

LIENS 
 
 
Code de la Propriété Intellectuelle. articles L 122. 4 
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 
http://www.cfcopies.com/V2/leg/leg_droi.php 
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm 
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1.1 Research Context

The development of the Internet has been leveraged by the deployment of large data centers
providing computing resources (software applications, virtualized hardware equipments) that
can be shared and combined to build elaborated services. These resources available in a metered
manner are contributing to lower the capital and operational costs of infrastructures and their
services. In particular, cloud computing introduces a new model for using and composing these
resources deployed over the Internet. In that context, a cloud service provider (CSP) may offer
different types of computing resources (with various levels of manageability) that can be exploited
by customers for their own usage. According to the the NIST Institute [95], cloud computing
can be characterized by five main properties:

• The on-demand self-service property enables customers to provision unilaterally resources
for their services.

• The broad network access property leverages an ubiquitous access to a service through
standard mechanisms, over the network, and more generally over the Internet.

• The resource pooling property contributes to an efficient management of resources that are
shared to support services.

1
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• The rapid elasticity property permits to adjust the resources to cope with the service
workload. The resources can be easily instantiated or released in a dynamic manner.

• The measured service property characterized the on-demand nature of resources provided
by cloud infrastructures. The fine-grained renting of these resources is in phase with
resource management and billing optimization.

The cloud resources are typically exposed according to three different service models:

• The Software as a Service (SaaS) model provides whole applications to the customers
exploiting the cloud infrastructure.

• The Platform as a Service (PaaS) enables the customers to build their own applications
on a development and deployment environment provided by the cloud infrastructure.

• The Infrastructure as a Service (IaaS) permits to the customers a direct access to elemen-
tary resources related to the infrastructure, such as virtual machines and equipments.

These service models correspond to different levels of manageability for respectively cloud
providers and cloud customers. The last service model is strongly dependent on virtualization
techniques enabling the access and configuration of hardware resources by customers.

1.1.1 Involvement of Virtualization in Cloud Computing

Virtualization is an important foundation of cloud computing, that permits to isolate and share
the software and hardware resources that are offered to customers. In particular, system vir-
tualization enables the uncoupling of running software applications from hardware resources
supporting their execution. This isolation in a virtual environment provides benefits in terms of
resilience and security, as highlighted in [51]. The control, that an hypervisor (implementing the
system virtualization) has over applications encapsulated in a virtual machine is an opportunity
to frame their behaviors and detect any malicious activities that may relate to them. However,
taking benefits of this situation also requires dedicated operations to handle the requirements and
characteristics of applications, such as controlling the access to hardware resources, or inspecting
their internal states.

1.1.2 Distribution of Resources over Cloud Environments

Cloud resources can be assigned to several customers with their specific requirements with re-
spect to the operations to be performed over their resources. Each customer can be called a
tenant, while the property for a given cloud to support multiple tenants is called multi-tenancy.
Moreover, these resources can be distributed over several infrastructures. The property for mul-
tiple infrastructures to provide resources and collaborate with each others is called multi-cloud1.
The conjunction of both multi-tenancy and multi-cloud defines the distributed cloud. The de-
ployment of such a cloud increases the complexity of management. A typical example is the
case of thousand of virtual machines belonging to different owners and hosted over dozens of
data-centers, while each of these machines embeds their own applications and have dependencies
with respect to data-centers on which they can be deployed on.

1The inter-cloud and cloud-of-clouds terminologies are considered as analog to multi-cloud
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1.1.3 Exposure to Security Attacks

If the managed resources (or management directives) are related to security objectives of the
cloud service, a mismanagement may jeopardize the security of tenant resources, as well as
the security of the whole cloud service. This case is worsened by the broad network access
property of cloud computing, as it increases the exposure of cloud services, making them an
attractive target. A first axis to support security management is provided by the autonomic
computing area [68]. It has opened new opportunities to tackle management and orchestration,
by addressing the self-configuration, self-healing, self-optimization and self-protection of complex
systems. It defines an approach for leveraging the automation of cloud environments, reducing
the cost of their management and limiting error-prone manipulations. A second axis concerns the
software-defined paradigm, which provides the matter to isolate resources from their control into
two different planes. As an illustration, the software-defined networking uncouples the network
equipments, corresponding to the data plane, from their management, corresponding to the
control plane. The conjunction of these two axes provide new perspectives for automating and
orchestrating the security of distributed clouds.

In that context, the main objective of this thesis is to design a unified and
homogeneous security management plane for protecting distributed clouds, bridging
the gap between virtualization and orchestration techniques.

1.2 Problem Statement

The building of a security management plane requires the identification of criteria to determine
whether a resource is in an acceptable state and behaves correctly, or whether it requires man-
agement operations to comply with such a state. A security policy permits to formalize such
criteria, and has then to be enacted by a management architecture and algorithms to enforce it.
Such an architecture ensures that applications comply to the security policy. It detects cloud
resources that are not aligned with the requirements of the policy, and forces them to be in
conformance. In particular, we are relying in this thesis on the orchestration and configuration
of security mechanisms that are software-defined. As depicted in Figure 1.1, several challenges
have to be tackled to design such a security management plane with respect to the distribution of
resources, the enforcement of security on them, and the adequacy with orchestration languages.

By definition, the protection of distributed clouds should take into account their multi-
tenancy and multi-cloud properties. From a security policy perspective, multi-tenancy sustains
the capability for different tenants to propose their own security policies, whose enforcement
perimeters are limited to their sets of resources. It requires the security management plane
to distinguish tenants during its processing. The multi-cloud property may also interfere with
security enforcement. By deploying resources over infrastructures, it may leave some of them
with no technical solution (due to the infrastructure) to conform with the security policy. The
security management plane is therefore expected to consider infrastructure specificities, while
orchestrating the security enforcement.

Distributed clouds also infer requirements over the security management plane. Cloud in-
frastructures come with a wide variety of allocated resources. The security management plane
requires to provide an architecture able to handle indiscriminately all allocated cloud resources.
Each resource comes with its own technical constraints, this impacting on how a security manage-
ment operation should be performed to protect it. The management plane should remain agnostic
to those specificities in its decision taking process, while the security enforcement should provide
mechanisms to take them into account. The high availability constraint drives the operational
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management of cloud resources. These resources may be exposed to security attacks all along
their life-cycle. It is therefore required to control cloud resources, and maintain the security
enforcement over them during their whole life-cycle.

Finally, the design of such a security management plane has to cope with the variety of
protection requirements and related mechanisms. This supposes the extensibility of security
policy languages, but also facilities to integrate enforcement mechanisms.

Figure 1.1: Challenges related to such a security management plane

In that context, this thesis addresses the design of an homogeneous security management
plane for distributed clouds, with respect to the following questions: (i) How can we design
a dedicated security management plane to enact the automatic and homogeneous
protection of distributed clouds? (ii) How can we ensure the compatibility of dis-
tributed cloud resources requiring protection based on this plane? (iii) How should
the security requirements over cloud resources be specified to leverage a security
orchestration from this plane?

1.3 Contributions

This thesis proposes a software-defined security approach for distributed clouds.
We consider the programmability of security mechanisms that protect cloud resources, in

order to leverage an homogeneous security management plane. This management plane serves
as a support to orchestration activities. It is completed by tenant security plane conducting
management operations adapted to each tenant, and supporting multiple infrastructures. This
approach permits to tackle the complexity induced by the distribution of cloud resources. The
security mechanisms are integrated within the resources requiring protection during the design
of these resources.

This permits to ensure an holistic integration of security mechanisms within cloud resources,
while exposing interfaces within the management plane. Moreover, securing resources before
their allocation contributes to ensure a complete protection all along their life-cycle. In this
thesis, we consider the case of distributed clouds composed of unikernel resources. We take
benefits from unikernel properties to reduce the attack surface, and facilitate the integration of
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security mechanisms at the resource design phase. The resources can be reconfigured or rebuilt
to cope with security contextual changes.

In the meantime, we extend a cloud orchestration language, called TOSCA, to drive the
building of these protected resources based on unikernels, and to support their configuration,
according to different security levels.

In accordance with the proposed approach, the contributions of this dissertation are summa-
rized as below.

1.3.1 Analysis of Virtualization Models for Cloud Security

As previously mentioned, virtualization constitutes a major building block for cloud computing
environments, in order to uncouple computing resources from infrastructures supporting them.
System virtualization based on hypervisors of type-I and type-II, has been reference solutions
for decades. Nowadays, novel approaches for elaborating virtualized environments has been
praised for improving performances and reducing technical management costs. The OS-level
virtualization proposes to replace system virtualization by moving the abstraction layer to the
interface between applications and their OS kernels. The unikernel-based virtualization consists
in relying on system virtualization, but modifies the system architecture, through the insertion of
a single application inside a dedicated OS kernel, in order to minimize unnecessary dependencies.
In that context, we provide a description of the different virtualization models, and perform a
comparative security analysis. In particular, we detail the vulnerabilities of these models with
regard to existing threats, and evaluate their criticality by detailing related attacks. Finally, we
point out several counter-measures and recommendations to avoid and mitigate these attacks in
the context of cloud environments.

1.3.2 Software-Defined Security Architecture for Distributed Clouds

The management of resources in cloud environments is complicated by the multi-cloud and multi-
tenancy properties that may appear when providing cloud services over distributed clouds. These
two notions have an impact on security management, in order to specify and enforce security
policies over resources that may be deployed over different infrastructures, and this with various
tenants. This complexity is increased by the changes that may occur on resources in the context
of cloud environments. Autonomic mechanisms permit to delegate some management tasks to
the infrastructures themselves, contributing to the automation of cloud services. The software-
defined paradigm also provides interesting perspectives for configuring security mechanisms and
aligning security requirements over different infrastructures. In that context, our contribution
consists in a logical architecture for supporting the programmability of security in the context of
distributed clouds. We define a software-defined security approach aiming at a centralized and
policy-driven control of the security in cloud environments. The proposed architecture addresses
such software-defined security by taking into account the multi-cloud and multi-tenant properties
of distributed clouds. The management is therefore performed at both the orchestration level
and the tenant level, while relying on different types of policies. The first one coordinates the
security management at the scale of a cloud service, while the second one addresses a specific
tenant context, and is in charge of the security decision taking. This architecture serves a support
for managing unikernel resources specifically built to address security requirements.
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1.3.3 Generation of Protected Unikernel Resources

Enforcing a security policy over resources is subjected to the availability of adequate mechanisms
to align their behavior with it. The lack of such mechanisms or a limited support for resources
requiring this protection can result in (i) the inability to address all the resources in the enforce-
ment perimeter, (ii) the inability to account the technical specificities of the resources, or (iii)
the inability to enforce a protection all along their life-cycle. Unikernels constitute a thriving
system architectural model that provides the necessary material for a comprehensive design of
virtual machines. The limited tooling they carry at runtime imposes to properly build them,
before their allocation. We therefore propose a framework for building unikernel images accord-
ing to security requirements. We model these images as a set of modules which can undergo a
configuration process and be built dynamically. This process serves as a basis for integrating
security mechanisms in line with the policy requirements. Each change affecting these unikernels
may imply the reconfiguration of images, their rebuilding, and the reallocation of their instances.

1.3.4 Extensions of a Cloud Orchestration Language

Defining a security policy at the scale of distributed clouds implies to cope with the heterogeneity
of security models and mechanisms related to tenants and clouds. Each of them has to be taken
into account, while considering inter-tenant and inter-cloud collaborations. In that context, the
TOSCA language supports the specification and the orchestration of cloud services whose re-
sources may be deployed over several infrastructures. The cloud service is described in the form
of a topology with a set of resources and their relationships. It is possible to specify orchestration
processes related to this service, these ones impacting on the state of resources and relationships.
In our work, we propose two extensions for this TOSCA language, in order to drive the gener-
ation of unikernel resources and take into account security requirements. The first extension,
called UniTOSCA, permits to detail the internal components of unikernel resources, and serves
a support to automate the generation of adequate images integrating security mechanisms. The
second extension, called SecTOSCA, enables the specification of security requirements, accord-
ing to different security levels. An orchestration process can be associated to each security level.
We provide a framework, based on these two extensions, capable of building and configuring
protected cloud services. The software-defined security architecture brings the gap between the
orchestraction activity and the generation of protected unikernel resources.

1.4 Outline of the Dissertation

The thesis dissertation is organized into seven chapters. Figure 1.2 describes their relationships.
We first conduct a state-of-the art on system virtualization with respect to cloud security,

in Chapter 2. We compare different virtualization architectures and analyze their properties
and criticalities to support cloud services. We elaborate several recommendations related to
unikernels and security programmability, serving as requirements for the approach developed in
this work.

In Chapter 3, we detail our software-defined security strategy capable of supporting the
management of security mechanisms into a dedicated plane for distributed clouds. We detail
the logical architecture implementing this approach, and supporting the multi-cloud and multi-
tenant properties induced by distributed cloud environments. An evaluation of this architecture
is performed, by confronting it to a set of realistic scenarios.
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Figure 1.2: Organization of this document

We introduce in Chapter 4 the on-the-fly generation of unikernels, as a mean to leverage
the security programmability of cloud resources. In particular, we present a framework for
generating unikernel images that are constrained by security requirements. Their protection
is enforced through the integration and configuration of dedicated mechanisms. We describe
a proof-of-concept prototype and evaluate the approach in both a quantitative and qualitative
manner.

Chapter 5 tackles the issue of the specification of security requirements. We rely on the
TOSCA cloud orchestration language, and introduce two dedicated extensions. The first one
addresses the internal description of unikernel resource,s while the second one supports the
security requirements. This extended TOSCA language is then exploited by a framework to
build and deploy protected cloud services. It drives both the generation of specific unikernel
resources, and their configuration (or re-building) over time.

The overall approach is evaluated in Chapter 6. We describe several technical implementa-
tions of the framework, relying on the extended TOSCA language, the software-defined security
mechanisms, and the generation of unikernel resources, and detail several series of experiments
to quantify its performances.

Chapter 7 draws conclusions, wraps up the contributions of the thesis, and presents perspec-
tives for future work.
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2.1 Introduction

System virtualization is an important key to cloud environments [95]. In these environments,
cloud service providers (CSP) expose resources to consumers, while these ones exploit these re-
sources to run services or to compose new elaborated ones that can be offered to other ones.
The multiplicity of stakeholders puts the security at stake at several levels and, consequently,
questions the security of the underlying system virtualization: (i) the cloud service level agree-
ment (SLA) specifies the availability of virtualized resources, (ii) the broad network access to
cloud resources and the possible multi-tenancy requires the isolation of virtualized resources,
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(iii) the growing involvement of governments through data protection regulation [43] puts also
an additional pressure on the cloud service providers to ensure the confidentiality and integrity
of resources. Recently, important efforts have been focused on performance improvement, with
the emergence of new virtualization technologies capable of reducing virtualized environment
footprints. On one hand, containerisation methods move the virtualization layer from the OS-
hardware border to the OS-application one, in order to share the OS kernel. On the other hand,
unikernel-based virtualization permits to simplify the complexity of virtual environments, by
building minimal operating systems specifically built for dedicated applications.

The development and deployment of virtualization technologies are still in the early stage,
while the technologies and products related are not yet mature. It therefore remains unclear
how virtualization will fundamentally impact the landscape of cyber-defense, how it can help to
improve security management, and more importantly, what kind of specific security threats it may
introduce. We envision that the attack surface of virtualization could be significantly enlarged
and multiplied due to the hypervisor isolation, cross-layer invocation, containerization, and so
on. These factors make virtualization extremely difficult to establish in-depth defense security,
requiring the critical security issues to be addressed in a holistic way. In particular, from a vertical
perspective, applications inside a virtual machine (VM) are diversely incorporated with several
layers and/or components, ranging from hypervisor to guest OS. Thus, any misconfigurations of
a VM instance or hypervisor could eventually allow attackers to penetrate into the applications.
From an horizontal perspective, as each layer is composed of heterogeneous components, the trust
relationship between these components, either hardware or software, is hard to be established.
It is therefore challenging to securely and seamlessly incorporate those components.

This state of the art addresses the security of system virtualization models used for cloud
infrastructures. Contrarily to [137], we do not focus on the security question related to the
operation of cloud environments. We provide an in-depth description of the virtualization models
to conduct a security analysis. Contrarily to [123], the considered virtualization models are not
limited to full-fledged VM system virtualization, but we also include OS-level virtualization and
unikernel VM system virtualization. Our approach is close to [121], but our analysis is not bound
to any cloud operation use-case.

To evaluate the benefits and limits of virtualization models for cloud security, the remainder
of this chapter is organized as follows:

• First, we describe in Section 2.2 different virtualization models, including virtualization
based on type-I and type-II hypervisors, OS-level virtualization and unikernel virtualiza-
tion. The purpose is to give a basic understanding of their design principles and relation-
ships, and to etablish a reference architecture that synthesizes these models and serves a
support for the security analysis.

• Second, we analyze in Section 2.3 the security of the different virtualization models, based
on this reference architecture. In that context, we identify and classify the vulnerabilities
that may affect the components of this architecture. We then quantify their probability of
occurrences, and detail the related security attacks, in view of existing security threats.

• Third, we infer in the last section different counter-measures and recommendations with
respect to cloud security. This includes the generation of dedicated virtualized resources,
the integration of security mechanisms at an early stage, and the opportunities offered by
security programmability. These recommendations serve as a basis for the elaboration of
our software-defined security approach for distributed cloud.
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2.2 System Virtualization Models

We will describe here different system virtualization models, in order to establish a reference
architecture, that will serve as a basis for the security analysis.

2.2.1 Context

According to [125], system virtualization is the use of an encapsulating software layer surrounding
an operating system, which conforms to the behavior expected from a physical hardware.

History. The system virtualization area has emerged since 1969, originally for general comput-
ing purposes such as multi-tasking or software-management. In the multi-tasking area, system
virtualization has enabled hardware resource multiplexing, and thus, the concurrent execution
of several OS, whereas the capability of enabling software execution conceived for one environ-
ment to run flawlessly on several others has paved the way for software management, at a time
when hardware architectures were heterogeneous. However, more efficient approaches dealing
with those issues have outrun the interest for system virtualization for decades. In 1990s, the
emergence of personal computing and the limited compatibility of software appliances to one
or a few number of operating systems has renewed the interest for system virtualization: the
desktop virtualization permits the usage of an appliance developed on one operating system with
another one. This is the main feature of products such as VMWare [154], founded in 1998. The
emergence and spreading of cloud computing during 2010s has developed a new application field
for the system virtualization: as the cloud paradigm relies on decoupling software resources from
hardware resources, this one has naturally become a mean for enabling this paradigm.

Regular System Architecture. We define a system architecture according to a two-state
mode execution environment (non privileged mode and privileged mode), as illustrated in Fig-
ure 2.1. Programs running in the non privileged mode rely on a subset of non-critical instructions
sets (which will not impact the state of the machine, defined later), while programs in the priv-
ileged mode are allowed to employ the whole instruction set. If a program running in the non
privileged mode wants to invoke a privileged instruction (instruction only allowed to run in the
privileged mode), it sends an interruption called trap. Such a trap will trigger the execution of
a predefined routine in the privileged mode. Practically speaking, on the x86 architecture, the
privilege degree is divided into 4 levels called protection rings. The privileged mode corresponds
to the value 0 of the protection ring, and the non-privileged mode is divided into ring 1, 2, 3. An
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Figure 2.2: Instruction set for a fully virtualizable architecture (a) and a not virtualizable archi-
tecture (b)

instruction is trapped if its ring value is higher than the ring value of the instruction it wants to
invoke. Nowadays, most of the OS kernels are implemented in the ring 0 while user applications
always resides in the ring 3. All user applications which are in the non privileged mode are
loaded to the memory address space as user space. The programs in the privileged mode are
then loaded to the memory address space as kernel space. One program can only run in one
specific mode. When a user application wants to use a privileged instruction, it is then trapped
through a specific interruption. The trapping mechanism stops the execution of the current ap-
plication, stores the execution context, loads the corresponding routine, and executes the routine
in the privileged mode. When the routine execution terminates, the execution context will be
switched back to the user application which is in the non privileged mode. The set of system
calls is defined as a subset of routines which can be invoked by applications in the non privileged
mode. Appendix 8.2 presents an example of routines in charge of issuing a system call from an
unprivileged application.

2.2.2 System Virtualization

The virtualization architecture derives from the regular system architecture, it enables concurrent
execution of multiple OS. Within this architecture, there exist 2 types of instructions: sensitive
and non-sensitive. Non-sensitive instructions can be executed directly on the hardware. However,
since they modify the state of a machine which may impact a concurrent execution, they need
to be controlled. The software module necessary to implement this virtualization architecture is
called Virtual Machine Monitor (VMM) whose properties are defined in [125]. A VMM provisions
an abstracted and isolated environment for each OS which is call Virtual Machine (VM). It is a
program interfacing between programs in each VM and hardware resources.

Fully Virtualizable Architecture

The fully virtualizable architecture is defined such that all its sensitive instructions are controlled.
The VMM uses the trapping mechanism to realize this control. Hence, an architecture is con-
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sidered as fully virtualizable if and only if all its sensitive instructions are part of the privileged
instructions, as illustrated by Figure 2.2. Thus, intercepting the instructions from unprivileged
mode permits to handle the execution of sensitive instructions through the privileged ones can
be controlled through traps. Formally speaking, the VMM supporting the fully virtualizable
architecture is expected to meet the following 3 properties: efficiency (the VMM allows innocu-
ous instructions to be executed by the hardware directly, without intervention), resource control
(no program can intervene in a hardware resource without a VMM allocator invocation), and
equivalence (any program acts indistinguishably whether it is executed within a VM or not).
Consequently, this architecture permits the existence of a VMM residing in privileged mode and
lowering the whole virtual machine (including its privileged instructions) to the unprivileged
mode: as illustrated in Figure 2.3, the VMM has to undertake (1) handling all trapping instruc-
tions from the VM, (2) simulating their effects according to sensitivity (innocuous instructions
are directly executed, sensitive ones trigger VMM substitution routines), and then (3) gives back
control to the VM. These three components enable the VMM to simulate privileged instructions:
the dispatcher identifies the VMM routine corresponding to the instruction requiring simulation,
the allocator allocates the resource required for the simulation, and the interpreter executes the
VMM routines for the simulation.

Partially Virtualizable Architecture

The existence of sensitive but unprivileged instructions prevents the VMM from using trapping:
such instructions do not trap and thus, do not trigger VMM instruction simulations, enabling the
VM to access the hardware resources directly, contravening the VMM objectives. For instance,
the x86 architecture does not comply with the fully virtualizable architecture [133]: some instruc-
tions including SGDT (Store Global Descriptor Table) and SLDT (Store Lobal Descriptor Table) are
invokable in non-privileged mode, but access the sensitive CPU registers. Such an architecture
refers as partially virtualizable, it is then necessary to treat those non-virtualizable instructions
with other means than instruction trapping. Three methods have emerged as solutions for this
issue: binary translation, para-virtualization, and hardware-assistance.

The binary translation method relies on a live interpretation of all sensitive instructions by
VMM routines. Once a VM program has its code loaded into memory and its execution started,
the VMM scrutinizes ongoing instructions to dynamically substitute sensitive ones by VMM rou-
tine calls before their usage. Those VMM routines are crafted to simulate their actions in a in-
distinguishably manner (equivalence property) in respect with VMM’s resource control property.
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Figure 2.4: Virtualization methods in a partially virtualizable architecture

Non-sensitive instructions are not concerned by this process, ensuring the efficiency property.
This process is performed at the binary level with compiled code. It is agnostic to the program
source code and does not require any modification to it. But, the runtime translation induces an
overhead due to the continuous memory access, rebounding on VM performances. Virtualization
appliances implementing this method include VMWare Workstation [154], QEMU [127, 17] and
Oracle Virtualbox [116].

The para-virtualization approach consists in the modification of the program source code
employing sensitive instructions before their instantiations, substituting them by equivalent
VMM routine calls (equivalence property) which are referred as hypercalls. Considering the case
of an OS in a virtual machine, the para-virtualization related code modification are only located
in the kernel of the VM, to make it cope with the VMM through hypercalls (resource control
property). User applications remain unaffected (efficiency property). In practice on x86, both
VMM and OS kernel reside in the protection ring 0 while unaffected user application resides in
ring 3. As the para-virtualization integrates hypercalls in the program code before its execution,
there is no more overhead due untimely memory access. This leads to better performance than
binary translation. Its downside is the modification the program code to make it cope with
the VMM. In numerous cases related to closed-source OS, its modification is not a considerable
option, and consequently preventing the usage of this method. The Xen project [148] provides
an appliance based on para-virtualization.

The hardware-assisted virtualization proposes a solution based on CPU capabilities.
More precisely, if hardware-assisted virtualization is available, the CPU proposes a root operation
mode intended to host the VMM and the non-root operation mode for VM code execution.
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These modes are not related to the privileged and non-privileged ones. The root mode enables
programs to define which instructions executed in the non-root one will trap back. Sensitive
instructions executed in non-root mode can be configured to trap (resource control property), and
to be simulated by a VMM routine in the root mode acting indistinctly (equivalence property).
Innocuous instructions do not trap and are not affected by VMM (efficiency property). Using
this method, virtualized programs are easier to build than those based on para-virtualization
as they do not required source code modification to insert VMM routine calls. Moreover, the
absence of dynamic translation contributes to better efficiency than the binary translation. On
the other side, this method is based on CPU features that are not systematically implemented,
bring the hardware issues into the prerequisite consideration for system virtualization.

VMM Implementation Types

As a common usage, VMMs (also called hypervisors) are implemented with extra-features en-
abling VM management (management console) and virtual hardware provisioning to VMs. In
this state-of-the-art, we refer to a hypervisor as a VMM embedded with a management console,
a memory manager, an input/output subsystem and a networking subsystem. We define a host
system as the only set of OS and applications to have access to hardware resources not mitigated
by the hypervisor. Conversely, guest VM alludes to the one with a restricted access to hardware
resources. We distinguish two types of VMMs.

The type-I hypervisor alludes to a VMM directly operating the hardware resources. The
host system runs alongside guest VMs, and both of them have to cope with the hypervisor.
Their main difference at runtime is that the host system is permitted by hypervisor to access
the hardware without restriction and have administrative privileges over the hypervisor while
the guest VM are handled by virtual hardware environment. Thus, this approach corresponds to
the classical VMM architecture. The Xen hypervisor [148, 12] and KVM [70] are two examples
of type-I hypervisor implementations.

The type-II hypervisor runs as an application of the host system. It cannot directly
access the hardware, but relies on the host OS routines to access hardware resources. Oracle
Virtualbox [116] and QEMU [127] are two well-known type-II hypervisors.

2.2.3 OS-Level Virtualization

Hypervisors and VMs contribute to a proven virtualization architecture, currently being used in
numerous use cases among which cloud computing, software testbed environments and software
analysis framework. However, from an application isolation perspective, embedding OS kernel
and virtual hardware environments with applications in a VM may be challenged from two
optimizing issues. First, each VM embeds an OS kernel instance, meaning a resource cost not
related to VM application exploitation. Second, the trapping mechanism induced by the VMM
is a CPU-cycle greedy mechanism.

OS-level virtualization 2 attempts to increase efficiency by eliminating OS kernel from the
isolation scope. It keeps only the set of applications and dependent libraries within a container.
They run in parallel with other programs of the host system and both of them access the OS
kernel and hardware resources, through the common OS kernel interfaces exposed to programs
residing in user space (system calls) [73]. The host OS kernel is in charge of required virtual
resources (i.e. filesystem access, networking) and container isolation enforcement. The container

2OS-level virtualization is also referred as containerization. However, some hypervisor-based solutions such
as [67] have started as well to claim this terminology. For the sake of clarity, we dismiss its usage in this chapter.
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execution environment benefits from kernel features and its configuration is performed by the
container engine. This extra layer runs at the host system application level. By these means,
OS-level virtualization enables almost-baremetal [45, 144] performances, outrunning the regular
system virtualization ones, at the cost of coupling containers with a specific operating system.
LXC [83], Docker [38] and gVisor [54] are three thriving examples of container engines supporting
the Linux OS. Appendix 8.1 explores Linux kernel features implied in containerization.

2.2.4 Unikernel Virtualization

Containerization has brought an application-centric perspective in the virtualization debate, as
the applications and their dependencies are the only embedded system parts in the portable
environment. OS-level virtualization induces the dependency of in-container applications upon
the host system OS kernel. It incidentally restricts the set of applications eligible to virtualization
to the ones supporting this OS kernel. Additionally, in the performance area, containerized
applications have to cope with host system OS kernel routines. Since containers cannot embed
routines running in privileged mode, they cannot implement optimized privileged routines for
dedicated purposes. Unikernel virtualization tackles these two issues, by transposing Library OS
concept to the system virtualization era. Through the bypassing of legacy support constrains, it
enables the refining of the system layer, reducing footprints of virtualized applications.

Library OS

A library OS exports the hardware resource management outside the OS kernel. In practice, this
management relies on a set of libraries, implementable by every application whose access to the
related resources is required. Each application is able to implement the most adapted resource
managers to its mission while the dispatching of resource management amongst applications re-
lieves the need of intermediate layers when accessing the hardware. In return, this architecture
comes at the cost of a restricted portability and compatibility toward managed resources. The
managers are expected to be resource-specific to attest their efficiency and application are not
likely to implement as many managers as there are available hardware resources. The Draw-
bridge [126], the V++ cache kernel [29] and the Exokernel [42] projects are three architectures
for library OS implementation exporting resource management in user space. The first converts
Microsoft Windows 7 into a library-OS compliant architecture at the top of a VMM for process
isolation purpose (pico-process) at the trade-off of keeping hardware management in the kernel
space of the host OS to ensure compatibility. The second one only employs memory address
space segregation in order to keep critical OS kernel features in the kernel space such as mem-
ory management, interprocess communications and thread management. The last one supports
application multi-tasking and a secured hardware resource management, which is endorsed by
libraries and is secured by a dedicated layer.Examples of Exokernel implementations include
Aegis [42], ExOS [42] and XOmB [77].

Unikernels

Unikernels corresponds to an OS architecture featuring specialized, sealed, single purpose library
OS. They can be run in virtual machine on the top of a hypervisor [91]. Each unikernel system
addresses an application, its configuration, and the minimal dependencies required to run, and
is configured and packed in an image, before their instantiation. Running inside a VM relieves
those library OSes from supporting a vast amount of hardware configurations, and focus only
on the virtual hardware environment exposed by an hypervisor. Additionally, the unikernel
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architecture does not provide backward compatibility. This approach strengthens the lightness
of unikernel VM instances compared to regular VMs. MirageOS [91] and IncludeOS [22] are two
examples of thriving unikernel solutions.

A single unikernel image solely addresses the integration of one application, with its minimal
set of dependencies. These dependencies address the application runtime, and libraries for both
the software and the hardware resource management, in line with the library OS concept. Soft-
ware components addressed by unikernel images can be tightly related to a development platform
or remain independent. The first option imposes the usage of a dedicated tooling, paradigm and
programming language to conceive a unikernel appliance. All the software components undergo
the same processing (i.e. static analysis, code optimization, code compilation, linking and pack-
ing), contributing to the performances and the lightness of the resulting image. From the system
architecture perspective, this option permits to include more system layer components in the
assessment scope of programming language properties. The second option can be assimilated
to the first one if a specific runtime environment is packed in the image. The in-situ software
management capability is not provided in the unikernel image. Instead, they are performed ex-
ternally, directly on the image before its instantiation, by the building of a toolstack, relying on
a package manager, or be only uprooted on code inclusion mechanisms. This ex-situ approach
contributes to lighten the unikernel footprint when instantiated.

An instantiated unikernel uses a single address space for its application and runtime, including
the hardware management. This outwits the constraints and the implied overheads due to context
switches issued by process scheduling or system calls and interrupts handling. Unikernel instances
do not implement processes but still rely on multi-threading to support running parallel tasks.
Built unikernel images can be conceived to be instantiable by a hypervisor, and cope with the
related virtual hardware environment. This capability enablement relates on the inclusion of
hypervisor-specific hardware resource management routines in unikernel images to address a
specific virtual hardware environment. In a unikernel VM exploitation case, type-I hypervisors
are usually privileged to minimize the layers mitigating the unikernel VM access to hardware
resources. The routines of the unikernel VM are executed in the privileged mode to avoid the
trapping overhead, when accessing the virtual hardware environment.

MirageOS

The MirageOS project associates the unikernel approach with the OCaml programming lan-
guage and ecosystem [91, 90]. It provides a framework for turning OCaml-written appliances
into unikernel images. This framework is constituted from a toolchain for preparing unikernel
images, and the base runtime for executing the appliance. The project has initially undertaken
the support of the Xen hypervisor, but the KVM and Bhyve hypervisors were also addressed
latter.The provided toolchain encompasses development environment preparation through de-
pendencies specification, solving and retrieval, and the unikernel image preparation through
application code compilation, object linking and image packing. The prepared unikernel im-
ages are composed by both the appliance and the Mirage execution environment. As previously
indicated, the first contains an application, its dependencies (libraries, runtimes and hardware
management routines) and its configuration, and are closely tied to the OCaml eco-system. The
applications are completely written in OCaml language, or partially written in C and tied back
to the OCaml context with the ocaml-ctype binding. Dependencies are resolved thanks to the
OPAM package manager before the mirage packing, and are written in the same fashion as ap-
plications. The configuration parameters are either hard-coded in application code or supplied at
VM instantiation. The Mirage execution environment embedded in the image includes an OCaml
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Figure 2.5: Virtualization reference architecture

runtime, and components depending of the targeted hypervisor. Mirage supports the Xen plat-
form thanks to the PVBoot bootloader, the core library (mirage-platform) based on the mini-os
project [134], and drivers for Xen blkif block storage and vnetif virtual network interface.
The Solo5 project [159] contributes to KVM support (QEMU, ukvm [160]) and bhyve support in
Mirage by providing compatible hardware management libraries: a core library (mirage-solo5 )
and interfaces management libraries (mirage-block-solo5 for block devices,mirage-net-solo5 for
networking). The syslinux bootloader is employed.

2.2.5 Synthesis

We have presented different virtualization models, including virtualization based on hypervisor of
type-I, virtualization based on hypervisor of type-II, OS-level virtualization and unikernel-based
virtualization. We infer a virtualization reference architecture that synthesizes these virtualiza-
tion models, and is depicted on Figure 2.5. This architecture will serve as a basis to our security
analysis and is composed of four levels:

• The hardware level, represented at the bottom row of the figure, encompasses phys-
ical resource composing the host machine: The CPU, the volatile memory (RAM), the
I/O interfaces (for persistent storage and extension cards) and the network adaptater for
networking purpose.

• The host OS level, appearing at the so-called row in the figure, is exploited only for type-
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II hypervisor and containers engines, and accounts for host OS kernel, base utilities and
core libraries employed by those VM softwares. Type-I hypervisor and unikernel-related
hypervisor may completely manage themselves hardware resources, or delegate complex
management to privileged VM (e.g. storage or network devices handling).

• The hypervisor level, mentioned in the figure in the row above, referring as much to
hypervisor as container-engine softwares. We assume it handles VMM capabilities (VM
instructions trapping and sensitive instructions handling), VM memory management, VM
networking (virtual network adaptater and inter-VM networks) and VM I/O interfaces.
The hypervisor is administrated through a management console, enabling a system admin-
istrator or a service to manage the hypervisor and VM configurations.

• The virtual machine level refers to VMs, containers and unikernels, and is mentioned by
the top row. In cases, this level includes applications, their configurations, their runtime
environment and the libraries they depend on. Utilities are not systematically embedded
in unikernel, since their features are embedded as application libraries, if they are required.
In the same manner, OS kernel is neither integrated in containers (containers rely on host
OS kernel) nor in unikernels (the OS kernel is reshaped in a set of libraries, provided with
the application if required).

Virtualization provides important properties with respect to security [123], in particular:

• Isolation: VM access to physical resources is regulated by the hypervisor. This control
affects inter-VM access as well, and confers resource isolation capability to virtualization.
Moreover, by allocating quotas to the physical resources to VM, virtualization also pro-
motes resource consumption isolation.

• Oversight/introspection: the hypervisor is able to inspect a VM resource usage and
thus observes its internal state, leading to the oversight capability. As the hypervisor is
also in charge of VM resource allocation, internal state modification may be performed,
defining the introspection capability.

• Snapshotting: the hypervisor enforces access control amongst a VM and physical re-
sources. This position permits the hypervisor to control the VM execution, by interrupting
and resuming it. The content of allocated resources can be saved and reallocated as well,
paving the way for VM internal state exportation and restoration (VM snapshotting). From
a security perspective, this feature permits reversing back a VM in a insecured state to a
previous secured one.

In the meantime, virtualization makes the system architecture more complex, by introducing
new components (e.g. hypervisor) and redefining interactions between system architecture com-
ponents (e.g. privileged instructions trapping). This may also introduce new security issues that
are analyzed in the following section.

2.3 Security Analysis based on the Reference Architecture

We conduct a security analysis based on the reference architecture. First, we investigate the
vulnerabilities of this architecture, draw a corresponding taxonomy, and evaluate qualitatively
the criticality of each vulnerability with respect to virtualization models. We then determine the
threats affecting this architecture, and analyze related attacks in view of identified vulnerabilities.
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Figure 2.6: Classification of vulnerabilities

2.3.1 Identification of Vulnerabilities

We first identify and classify vulnerabilities related to the reference architecture, as depicted
on Figure 2.6. The criticality of these vulnerabilities with respect to virtualization models is
presented in Table 2.1. We investigate vulnerabilities carried by the VM as a part of a top-
down study based on the reference architecture. We assume a VM hosting an application,
its library dependencies and an OS kernel. We then consider the vulnerabilities affecting the
hypervisor (or the container engine) running on the host machine. Nested virtualization is seen
as a particular case of VM applications. In that context, we detail vulnerabilities related to
(1) the VM application, (2) the VM guest OS, (3) the hypervisor, (4) the hypervisor execution
environment.

VM Application

We describe vulnerabilities related to VM applications into two categories: memory management
(with respect to runtime variable type checking, memory deallocation, kernel inference in user
space, and developpement software flaws), and software interfaces (with respect to access control,
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possible code injection, and concurrency).

Memory Management. An application instantiated in a VM relies on memory management
routines provided by language interpreters, OS standard libraries and kernel internal routines.
The lack of type checking on variables at runtime introduces trivial memory management
based exploitation such as buffer overrun [57, 128] or integer overflows. This vulnerability is
emphasized by the size of the code base of the applications deployed on virtual environments.
Consequently, type-I and type-II hypervisors are the most subjected to this vulnerability, while
OS-level virtualization benefits from OS kernel removal. As unikernels have their code base
highly constrained, their virtualization model is the least affected. Memory deallocation
also induces security issues. Except for interpretor-based execution environment equipped with
memory garbage collector, no memory space is ensured to be automatically deallocated when
stopped being used. This may lead to process memory leaks [57, 128, 21], and data persistence
issues [143]. This vulnerability is related to traditional system architecture with multiple pro-
cesses, and impacts type-I and type-II hypervisors as well as OS-based virtualization. The single
application support from unikernel leaves physical memory cleaning to the hypervisor at applica-
tion termination. Kernel inferences in userspace may also be possible. OS kernel is in charge
of system management, by providing routines that application processes exploit. Nevertheless,
the kernel is also able to manage this address space for various purposes, such as process swap-
ping, free space reclamation [74], and exception handling. All virtualization models are affected
by this vulnerability. While the vulnerability is obvious in the traditional system architecture,
unikernels rely on a built-in runtime for the complete support of application. Finally, we should
remind that any program comes with software flaws and bugs issued from their development
cycles, inducing new exploitable vulnerabilities. This echoes to the unikernel pleading to limited
code base, while OS-level containers benefit from not embedding an OS kernel.

Software Interfaces. In VM, programs rely on interfaces to communicate with the users and
other programs. These ones are able to emit and to receive data through several channels in-
cluding memory buffers, I/O interfaces and network sockets. In the area of access control,
the improper implementation and configuration of authorization and authentication mechanisms
can generate several vulnerabilities such as bad privileged assignment (configuration) or weak
authentication [105, 63]. While virtualization models employing traditional system architec-
ture have to carry multiple applications and base utilities with their own interfaces, unikernel
models solely expose interfaces of the application it supports the execution of. Consequently,
the access control vulnerability may be considered as less critical than in other virtualization
models. Software interfaces may be used to corrupt the execution of a program, when it does
not proceed to the necessary checks on the input data. This can lead to the exploitation of
inconsistencies in data structures [104, 100], non-controlled string format exploitation [139] and,
more directly, code injection [103, 65] (and former execution). If an interface can be accessed
by several programs at a time, employing synchronization mechanisms is mandatory. Otherwise,
it may be concerned by concurrency vulnerabilities [103, 112]. As all virtualization models
support multi-threading in their virtualized environment, they are all equally affected by these
vulnerabilities.

VM Guest OS

We consider two main categories of vulnerabilities related to guest OS: software management
(including dependency solving, service degradation and configuration issues) and OS kernel
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Runtime variable type checking   G #

Memory deallocation    G

Kernel inference in userspace G G G G

Development software flaws   G #

Access control    #

Code injection    #

Concurrency G G G G

Dependence solving error    #

Service degradation during management G G G #

Configuration issue   # #

Kernel criticality G G #  

Specific security mechanisms   # #

Access to userspace   #  

Hardware exposure   # G

Co-residence G G  #

Shared networking G G G G

Other resource sharing G G G G

Resource sharing with the host # #  #

Implementation of virtualization method G G  G

Hypervisor oversight G G  G

Management console oversight G G G G

Non-linear/ non-monotonic VM execution G G G G

Host OS - Dependence solving error G   G

Host OS - Service degradation during management G   G

Host OS - Configuration Issue G   G

Host OS kernel - Kernel criticality G   G

Host OS kernel - Proper security mechanisms G   G

Host OS kernel - Access to userspace G   G

Host OS kernel - Hardware exposition G   G

Hardware oversight G G G G

Hardware physical properties G G G G

Hardware upgradibility G G G G

Hardware physical access G G G G

Table 2.1: Occurence of vulnerabities with respect to virtualization models
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oversight (including kernel criticality, specific security mechanisms, access to user space, and
hardware exposure).

Software Management. When provisioning a virtual machine to prepare a service, the ap-
plication is installed over its execution environment, and may be upgraded to a new version
to apply security fixes, and eventually benefits from newly available features. In practice, such
software management is performed by a package manager (e.g. APT [5]) or by a dedicated in-
staller (E.g. 0install [1]) especially shaped for dedicated appliances. Nevertheless, dependency
solving may generate vulnerabilities [37]. This affects particularly virtualization models sup-
porting legacy system architectures. Software management can be performed on several points
(e.g. base utilities, runtime, application itself) and imply multiple providers, increasing the vul-
nerable surface. On the opposite side, the software management in unikernels employs a pool of
software components provided by the unikernel itself, and is performed only at build time. Be-
sides, software management processes may lead to the degradation of services, as the upgrade
usually requires to restart and reload configurations. This can be exploited to make the service
unavailable during a certain time period. In every virtualization models, this vulnerability can
be mitigate by performing upgrades on virtual environments that are not in production. This
mitigation is natural for unikernels, as software management is performed ex-situ. Finally, soft-
ware management may also induce configuration vulnerabilities. This may be due to packages
whose initial configuration is too permissive, as shown by [60]. It may also relate to the update of
configuration files during upgrades, with inconsistencies related to the new version of an applica-
tion. Type-I and type-II virtualization models are the most affected due to the complexity of the
architecture, while OS-level virtualization benefits from the absence of OS kernel in containers,
and unikernels are protected by their inherent constrained nature.

OS Kernel Oversight. The OS kernel is a software running in privileged mode in charge of ba-
sic system resource management. The criticality of the kernel toward the system contributes
to vulnerabilities with respect to tasks that it supports. These vulnerabilities are emphasized on
monolithic kernel architectures (such as Linux), while they are further limited in micro-kernel
architectures [81]. These vulnerabilities are bounded to the resilience of OS kernels and its iso-
lation with the applications. OS-level containers are out of the scope, as they do not embed any
OS kernels. Type-I and type-II virtualization models are the least affected, as the OS kernel
exploits the system architecture features (i.e. privilege levels) to isolate itself from applications.
On the opposite, unikernels do not propose strong barriers to isolate hardware management
routines from the application ones. The OS kernel carries its own design principles, which may
lead to the inapplicability of security mechanisms from the OS kernel to protect applica-
tions. For instance in Linux, process address space isolation is a non-sense in kernel space, as
the notion of process is not defined there [21]. Unikernel is one known exception, as its design
is based on a common framework for both the development of hardware resource management
and applications [90]. Therefore, this vulnerability affects most significantly the type-I and type-
II hypervisor virtualization models, while neither the OS-level nor the unikernel virtualization
models are concerned. The access to user space is also another source of vulnerabilities.
For instance, Linux kernel contains routines to read or write memory allocated to applications
without restriction, (copy_from_user() and copy_to_user()), enabling it to intervene with no
control [21]. The kernel has thus access to the application internal structures supporting both
the application data and code. Finally, the OS kernel has an unrestricted access to hardware
resources, since it runs in privileged mode. These resources can be either physical or virtual.
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The hardware exposure constitutes another vulnerability. All the virtualization models (ex-
cept OS-level one) are concerned. Unikernels are packed only with the hardware management
routines that are necessary to the proper application operation, reducing potential risks.

Hypervisor

The hypervisor is subject to several vulnerabilities related to : inter-VM crosstalks (such as co-
residence, common networking infrastructure, and other resource sharing issues), VM-hypervisor
crosstalks (such as resource sharing with the host, implementation of virtualization, and hyper-
visor oversight issues) and the management console (such as hypervisor oversight and non-linear
VM execution issues).

Inter-VM Crosstalks. By controlling VM access to physical hardware, the hypervisor en-
forces inter-VM isolation. Each VM is not able to access the resource or communicate with
another, except if it is tolerated by the hypervisor. This isolation is especially challenged when
several VMs are sharing the same hypervisor on the same hardware. This situation is referred as
VM co-residence [132]. Indeed, VMs rely on the same resources (CPU, memory, I/O, network-
ing interfaces), and the same hypervisor. Compromising one of these shared resources paves the
way for creating a hidden channel mitigating the hypervisor isolation, as stated by [16]. This
vulnerability affects the virtualization models in different manner: VMs with type-I hypervisor,
type-II hypervisor and unikernels rely on a virtual hardware environment to interact with each
other. These interfaces are specifically provisioned to each VM to let the hypervisor enforce the
isolation. Unikernels restrict the interfaces, by supporting the least necessary virtual hardware
resources for the unikernel execution. On the contrary, co-located containers in OS-level virtual-
ization are part of a common host OS, that provides a wider pool of shared resources. This leaves
them more vulnerable to these isolation issues. In the area of networking infrastructures, the
hypervisor may provide a networking feature to support communications amongst hosted vir-
tual environments and external resources. It can either rely on a virtualized network sustained
only by the hypervisor or by an external program (e.g OpenVSwitch [115]). The networking
configuration has to enforce the isolation amongst resources to only authorized communications.
A misconfiguration leads to potential vulnerabilities enabling to bypass the isolation. Hypervi-
sors may also feature other resource sharing, whose misconfiguration enables communications
amongst VMs. The most obvious one is persistent storage sharing amongst several VMs (vol-
ume). Several VM may be an instance of a common image issued from a registry. The tampering
of this image can compromise the related allocated VMs. This vulnerability affects equally all
the considered virtualization models.

VM-Hypervisor Crosstalks. The hypervisor controls the execution of VMs, while interfacing
between them and the host OS. It enforces the isolation between the host system supporting the
hypervisor and the VM. Hypervisors and VMs communicate through interfaces. The virtual
hardware environments is composed of virtualized hardware resources exposed to the VM and
serving as a communication medium with the hypervisor. These resources may be subject to
vulnerabilities [102, 94, 76]. Hypervisors may also provide private communication channels (with
their VMs), that may not enforce proper security checks [98]. Vulnerabilities may also be due to
the implementation of virtualization methods. From a software engineering perspective,
hypervisor routines can be flawed, and carry software vulnerabilities [99]. It may also affect
their implementations [129]. System virtualization may exploit hardware mechanisms that
can mitigate the effects of software flaws. This contributes to make them a bit more secured.
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Finally, the hypervisor controls the execution of VMs, and has an holistic view over the usage of
virtualized resources. The oversight of hypervisors can be seen as a potential vulnerability,
as they can access and modify the exposed virtual hardware resources [109]. Models related to
system virtualization are less prone to these vulnerabilities. OS-level virtualization exposes the
whole system call interface of the host OS kernel to containers, jeopardizing its isolation.

Management Console. For administration and monitoring purposes, each hypervisor pro-
poses an interface for handling it and the hosted VMs. The management console can be used
by administrators or other entities, such a cloud orchestrators.The first vulnerability relates the
oversight based on the management console. The users of the management console have a
complete control over VM life-cycles, and can modify the configuration of the virtual hardware
environment. This control can be performed independently from what the software in VMs can
support, affecting its execution. Users are also able to build new and unsecured communication
channels [79]. All virtualization models are equally affected by this vulnerability, as each one
proposes a management console. This control also permits to affect the monotonicity of VM
executions, as shown in [123, 47]. For instance, performing a suspend-and-resume operation
against a VM enables potential time and replay attacks. All virtualization models are equally
affected by this vulnerability. These features are quite common in hypervisors, but may also be
performed over container-based solutions.

Execution Environment of the Hypervisor

The execution environment (host OS or hardware) of hypervisors is also concerned by different
vulnerabilities.

Host OS. Hypervisors supporting the execution of VMs have to rely on an OS to access
physical hardware resources. This OS can be an internal part of the hypervisor (e.g VMware
ESXI), be a VM itself controlled by the hypervisor (e.g. Dom0 in Xen), or be out of the control
of the hypervisor (e.g. Oracle Virtualbox). The hypervisor is dependent of the behavior of this
OS. The OS-level virtualization is affected as well by these vulnerabilities as it is an application
supported by an host OS. We consider that Host OS vulnerabilities are the same than the
ones detailed in Section 2.3.1. These vulnerabilities are predominant in type-II hypervisor and
OS-level virtualization models, as host OSes are necessarily present. Type-I hypervisor and
unikernel virtualization models are less affected, as the OSes can be managed and combined in
the hypervisor.

Hardware. As nested virtualization is considered as out-of-scope of this analysis, we consider
cases where the hypervisor (and eventually the host OS) are running on a bare-metal hardware.
The hardware layer is affected by vulnerabilities, independently from the considered virtualization
model. The hypervisor is a software component requiring a hardware infrastructure to operate.
This hardware has an oversight above the running hypervisor, the running VMs and the current
communications of the virtual interfaces exploiting the physical one. The persistent storage of
the hardware infrastructures also affects the stopped VM, and their own storage. This makes
hardware an attractive target to then compromise VMs. The physical properties of hardware
can be exploited as side channel sources [72]. Hardware manufacturers embed firmwares with
their devices, such as CPU microcodes and extension card firmwares. Some of them do not
accept firmware upgrades, because of the design constraints or by the lack of support from
manufacturers, leaving security flaws unpatched. Other ones support it, but may require the
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system to run in a limited mode [162]. Finally, the physical access to hardware resources
constitutes an important vulnerability, as components may be added or modified in the hardware
layer, altering the behavior of underlying hypervisors and VMs.

2.3.2 Considered Threats and Attacks

In accordance with the methodology exposed in [149], we analyze the different attacks related
to our reference architecture, according a set of six threats, namely spoofing, tampering, repu-
diation, information disclosure, denial of service and elevation of privileges. In that context, we
assume several hypotheses regarding the reference architecture and the attacker:

• The instantiated virtual machine applications expose interfaces that are accessible remotely.

• The attacker is located remotely, and can use the legitimately exposed interfaces.

• The hardware layer is not accessible to the attacker. We consider physical intrusion attacks
out of the scope of system virtualization.

• The assets targeted by the attacker are applications and data located in virtual machines.

• The objective of the attacker is to impact on the availability (denial of service), the integrity
(alteration) or the confidentiality (retrieving) of an asset.

• A component is considered as secured if not compromised, but may contain inherent soft-
ware flaws known by the attacker. The attacker can exploit them to compromise a com-
ponent, and gain influence over it.

We classify attacks with regard to threats, according to the notion of compromises: we consider
a component as compromise, when the attacker is capable of executing an arbitrary code. We
introduce a three-level classification based on the extension of [137]: compromise-free attacks
(that are not related to compromises), compromising attacks (that enable compromises), and
compromise-based attacks (that are based on compromises). Figure 2.7 provides an overview of
this classification, while Table 2.2 details the relationships with the threats and the reference
architecture.

2.3.3 Compromise-Free Attacks

We first detail compromise-free attacks, that do not aim at or do not require the compromise of a
component of the architecture. As targets of these attacks, we mainly focus on virtual machines
and hypervisors. However, the execution environment of hypervisors might also be considered
to some extent, as an objective for an attacker.

Virtual Machine As a Target

We consider in this category VM denial of service attacks, which consist in blocking or
disrupting the operation of a virtual machine. These attacks do not aim at gaining control over
the resource nor exfiltrating data, but only affect its availability. Such an attack can be performed
from the hypervisor (exploiting the management console oversight vulnerability), by using the
management console (or a service controlling it) to shutdown the targeted virtual machine, as
detailed in [79]. A more discret manner to proceed such a denial of service is to reconfigure the
virtual hardware environment to cause the VM dysfunctioning (e.g. reducing allocated RAM)
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Attacks

Compromise-Free Attacks VM As a Target VM Denial of Service
Software Bad Design

Hypervisor as a Target Hypervisor Denial of Service

Compromising Attacks VM Application Software Exploitation
OS Kernel Exploitation
Hyperjacking/ Hypervisor Injection

Hypervisor Hypervisor Direct Exploitation
Command Control Channel Exploitation

Hypervisor Execution Env. Firmware Exploitation

Compromise-Based Attacks Malicious VM Hyp. Computation Res. Monopolization
VM Hopping
VM Monitoring from the VM
VM Escape to the VM
VM Escape to the Host

Malicious Hyp. VM Monitoring from the Host
Inter-VM Communication Introspection
VM Mobility

Figure 2.7: Classification of attacks

to reduce the footprint of the attack. The network may also be used to perform such attacks.
Based on the hardware exposure vulnerability of guest and host OS kernels, a massive workload
from the network may make the VM applications and the VM OS kernels unaivaible. This
can typically consist in a distributed denial of service attack. Software flaws are also sources
of software failures (e.g. [101] related to a given appliance) and can be exploited to perform
denial of service attacks. VM appliances may be attacked using their intrinsic flaws, or the ones
of their dependencies. These attacks exploit mostly the memory management and concurrency
vulnerabilities, but might also rely on software interface vulnerabilities. The OS kernel of the
VM may also be used for that respect (kernel criticality vulnerabilities). According to [53], linux
kernel faults are mainly due to unsecure software development.

We then focus on attacks exploiting software bad design. Software applications may carry
flaws in their design, but not specifically related to their code. These attacks can be performed
without requiring the execution of arbitrary code, and thus, without requiring a compromise.
They relates to the tampering threat of in-VM applications, their runtime, the base utilities and
the in-VM OS kernel. For instance, misconfigurations are typically exploited to perform such
attacks, as detailed in [82, 13]. They may the consequence of initial inadequate settings, or
changes due to software upgrades or manual administration. The impact of such attacks can be
high, when they relate to authorization and authentication rules (access control vulnerabilities).
Software management may also be exploited for that purpose. Outdated dependencies, required
by VM appliances, can introduce vulnerabilities. The upgrade process can also lead to man-
in-the-middle (MITM) attacks during the collection of packages, as pointed out in [87, 24]. In
particular, it is possible to prevent the execution of software updates, including security patches.
These attacks relate to the dependency solving error vulnerabilities and the memory management
vulnerabilities. Finally, attacks may also be based on the non-linear/non-monotonic execution
vulnerability. As exposed in [123], an attack might restore a VM to a vulnerable state, by using
the hypervisor facilities.
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Hypervisor as a Target

The compromise-free attacks also concern denials of service related to hypervisors, similar to the
previous ones:

• The management console represents an attack vector, since it can shut down the hypervisor
(management console oversight vulnerability).

• Network protocols can be used to flood the hypervisor and/or its execution environment
based on DDoS attacks.

• Hypervisors are also composed of software components, having their own vulnerabilities
that are exploitable by attackers.

We can also notice that VMs can indirectly contribute to hypervisor denial of service. For
instance, authors of [123] point out VM sprawling flaws, enabling the rapid spread of misbehaving
VMs. This leads to the exhaustion of the hypervisor resources.

2.3.4 Compromising Attacks

The second main category of our classification is compromising attacks. This compromise often
serves as a basis for more elaborated attacks. We analyze here attacks leading to the compromise
of components of the reference virtualization architecture. We distinguish attacks affecting the
virtual machines, the hypervisor and its execution environment.

Virtual Machines

The attacks compromising virtual machines first include software exploitation attacks, that
consist in forcing an application in a VM to execute an arbitrary code. As the application runs in
an unprivileged mode, the injected payload cannot rely on privileged instruction sets. This affects
in-VM applications, their runtime and base utilities. Considered actions include the tampering
of resources, the privilege elevation of an attacker, and the disclosure of information. This attack
may exploit several vulnerabilities. In addition to memory management vulnerabilities [124],
the code injection in software interfaces may also be used for the insertion of payloads. The
dependency solving error [3] in software management may also prevent software upgrades, in
order to maintain security flaws. Compromised OS kernels can also contribute to such attacks
(access to userspace vulnerabilities). Authors of [28] show applications can be subverted by an
OS kernel based on forged returns from system calls. Other flaws, such as misconfigurations
and additive dependencies, may be used from unprotected interfaces. The work in [87, 24]
also investigate a MITM attack against the software management system, with the objective of
inserting or maintaining unprotected interfaces on applications, accessible by the attacker.

We can also considerOS kernel exploitation attacks aiming at the execution of an arbitrary
code by the kernel. These attacks benefits from the privileged execution mode, which extends
the attack surface. A concrete example of such attack is the use of rootkits [114], enabling an
attacker to gain the whole control over a system. The related threats include tampering, privilege
elevation, and disclosure of information. A compromised application in the user space may be
sufficient, but not necessary for performing these attacks. Moreover, modular OS kernels increase
the risks, as the module loading process constitutes an additional payload vector.

Finally, we can point out hyperjacking / hypervisor injection attacks. A typically exam-
ple is the VM-based rootkit (VMBR) attack, which permits to integrate a malicious hypervisor
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at the bottom side of the operating system. Its introspection capability enables it to overpass
any security mechanisms [123]. Subvirt [69] proposes persistent VMBRs targeting both Win-
dows OS and Linux and hosting malicious services undetectable from these OS. The blue pill
attack, described in [25], is a VMBR attack capable of infecting an host without any reboot. The
VMBR attack takes advantages from the hypervisor oversight vulnerability to get introspection
capabilities, and to be not detectable by OS-level detection mechanisms.

Hypervisor

The compromising attacks may also target the hypervisor of the virtualization architecture.
Amongst these attacks, we can highlight hypervisor direct exploitation attacks. Even if
they are not expected to be exposed as VM appliances they host, hypervisors remain sensitive
to these direct attacks. The threats related to these attacks affect the hypervisor itself, by tam-
pering it, repudiating the traceability of its behavior, disclosing information of its configuration
and the VM configuration, and elevating the privilege of a VM user to those of the hypervisor
administrator. For instance, the work in [161] illustrates the Xen hypervisor (and the privileged
domain) compromise by a rootkit using a weakness in the DMA implementation and the Xen
debug register. [117] also identifies several common attacks against hypervisors, by considering
the case of local attackers. Hypervisor extension mechanisms (extension packs, module frame-
work) are also critical components for the hypervisor, as they are capable of loading code, such
as a malicious payload, in its instance. Such attack is described in [117], where the Xen loadable
module framework permits to load arbitrary code in the Xen address space. These attacks take
advantage of the resource sharing with host and virtualization implementation vulnerabilities.

Another important compromising attacks correspond to command/control channel ex-
ploitation attacks. The command/control channel is a privileged communication medium be-
tween the hypervisor and a VM, as depicted in [155]. This threat targets the hypervisor, through
the repudiation of malicious activities in a VM. Also, the work in [26] investigate how to use
the command channel testing feature, in order to recognize a virtual machine environment.These
attacks may typically be related to the resource sharing with host vulnerability.

Execution Environment of the Hypervisor

Compromising attacks may also include firmware exploitation attacks against the execution
environment of the hypervisor. Hypervisors are running at the top of a hardware layer, except
in the case of nested virtualization. They are therefore constrained by the hardware layer, which
is composed of devices with their own firmwares. These firmwares may carry their own flaws,
providing the necessary material to an attacker to compromise them. The corresponding threats
are the hardware tampering, the information disclosure based on side channels, and the elevation
of privileges to get control on the software components running over the hardware. For instance,
such an attack is showcased in [163], in order to compromise the firmware of network interface
card. These attacks are emphasized by the hard constraints regarding the upgrade procedure of
these firmwares. Such upgrades are typically limited by the degradation of services during the
upgrade process, or by the lack of support from manufacturers. These attacks are mainly based
on the hardware oversight and hardware upgradability vulnerabilities.

2.3.5 Compromise-Based Attacks

The last category of attacks are compromise-based attacks. The two first categories (compromise-
free and compromising attacks) are often the first steps towards establishing a more sophisticated
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attacks targeting a virtualization architecture. Consequently, we consider that compromise-based
attacks require the prior compromise of a component to be performed. These attacks typically
include the case of malicious virtual machines attacking the remainder of the virtualization
architecture, and the case of a malicious hypervisor trying to snoop on the virtual machines it
is in charge of.

Malicious Virtual Machines

The first category of attacks relies on malicious virtual machines. An hypervisor hosts several
VMs, which share the same physical resources. They can be competing to access these resources.
The hypervisor resource monopolization attacks consist in a malicious VM taking control
on an hypervisor to gain an exclusive access to these resources. This leads to the violation
of the hypervisor resource isolation. These attacks on physical CPU are described in [168]: a
Xen scheduler vulnerability is used by a malicious virtual machine to steal compute cycles to
other co-located machines. They typically exploit the co-residence and the virtualization method
implementation vulnerabilities.

The VM hopping attacks consist in a malicious VM that directly targets another VM from
the virtualization environment. The related threat concerns the VM applications, their runtime
and utilities, and their OS kernel. They permit the tampering and the elevation of privilege in the
virtualization architecture. These attacks can typically use common networking infrastructure
and other resource sharing vulnerabilities to access the targeted VM. It can exploit software
interfaces, configuration and hardware exposure vulnerabilities to perform a compromise.

The attacks regarding the VM monitoring from a VM consist in collecting information
about a VM, without compromising it. They can typically rely on a passive monitoring of
another virtual machine. The related threats are about VM applications, their runtime and
their OS kernel, through the disclosure of information and the breaching of the non-repudiation
principle. These attacks are mainly conditioned by the exploitation of side channels, and the
co-residence of VMs. [14] illustrates the by-passing of an OS protection based on hypervisor side
channels. The work in [165] makes use of co-residence and physical properties to affect memory
pages owned by other VMs, to proceed to in-memory information leakage or even to build a
hidden channel between both VMs. The co-residence issue is especially challenging in a public
cloud infrastructure. The work in [132] details the steps to reach a VM co-residence with the
targeted VM. Finally, authors of [167] explore how co-residence can contribute to cryptography
key leaks based on CPU L1-cache. These attacks are based on the hardware physical properties,
the virtualization method implementation and the inter-VM crosstalks vulnerabilities.

The VM escape to a VM attack aims at compromising the hypervisor, in order to access
another VM. It is very similar to a VM hopping, and corresponds to the same threats, but relies
on the hypervisor compromise to break the isolation. VM-hypervisor crosstalks vulnerabilities
are typically involved in these attacks. The VM escape to an host relies on the hypervisor
compromise from the malicious VM, in order to gain further control. In most of the cases, these
attacks target legitimate interfaces between the hypervisor and the malicious VM, in order to
compromise the hypervisor, such as the VENOM attack [48] and the Cloudburst attack [76].
These attacks take advantage of the VM-hypervisor crosstalks vulnerabilities.

Malicious Hypervisor

The second category of attacks relies on a malicious hypervisor. The VM introspection /
monitoring attack from the host exploits a malicious hypervisor to analyse the behavior of a
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Runtime variable type checking 4 4 4

Memory deallocation 4 4 4

Kernel inference in userspace 4 4 4

Development software flaws 4 4 4

Access control 4 4 4

Possible code injection 4 4 4

Concurrence vulnerability 4 4

Dependence solving error 4 4

Service degradation during mgmt
Configuration issue 4 4 4

Kernel criticality 4

Proper security mechanisms 4 4

Access to userspace 4 4

Hardware exposition 4 4

Co-residence 4 4

Common networking infrastructure 4 4 4

Other resource sharing 4 4 4

Resource sharing with host 4 4 4 4 4 4 4

Virtualization method implementation 4 4 4 4 4

Hypervisor oversight 4 4 4 4 4

Management console oversight 4 4 4

Non-linear/monotonicity VM execution 4 4

Host OS - Dependence solving error
Host OS - Service degradation during mgmt
Host OS - Configuration Issue
Host OS kernel - Kernel criticality 4

Host OS kernel - Proper security mechanisms 4

Host OS kernel - Access to userspace 4

Host OS kernel - Hardware exposition 4

Hardware oversight 4

Hardware physical properties 4

Hardware upgradibility 4

Hardware physical access

Table 2.3: Relationships amongst attacks and vulnerabilities
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VM and infer its internal state. Different introspection techniques are presented in [109] to track
the activities of a virtual machine. For instance, [79] demonstrates an approach for extracting
a secret key from a memory dump. Authors of [107] propose a strategy to extract secrets from
a AMD SEV-protected VM: a malicious hypervisor manipulating the mapping between guest
physical memory and the host physical memory enables a malicious distant client to obtain
secret data. A shown in [79], the management console can also serve as a support to perform
such a malicious monitoring. These attacks are typically based on resource sharing with the host
and hypervisor oversight vulnerabilities.

The inter-VM communication introspection attacks may also provide interesting infor-
mation regading VM communications with other hosted VMs or hosts, through I/O or networking
subsystems that are handled by the hypervisor. This raises privacy issues related to communica-
tion interception and introspection. The threat affects the OS kernel, the runtime environment
and the applications in VMs, causing potential disclosure of information. The hypervisor over-
sight and resource sharing with host vulnerabilities contribute to these attacks. The textbfVM
mobility attacks consists in an attacker using the export feature of the hypervisor to obtain the
VM storage device, the virtual hardware environment configuration, and the current state of the
memory and vCPU related to a VM. They can typically be based on the management console
vulnerabilities.

As a synthesis of this section, Figure 2.3 describes the relationships amongst the vulnerabil-
ities of the reference architecture and the attacks that they leverage.

2.4 Counter-Measures

After having classified security attacks, we propose different counter-measures and recommenda-
tions with regard to the reference architecture. We consider two major requirements with respect
to these counter-measures. They should have a minimal impact on the operability of protected
resources, and should not impact on the security benefits brought by the virtualization itself,
in particular in our cloud computing context. We provide a threefold classification of security
counter-measures. It includes counter-measures consisting in integrating security mechanisms at
the design of a resource, counter-measures aiming at reducing the attack surface of the resource,
and counter-measures enabling a higher adaptation through security programmability.

2.4.1 Integration of security mechanisms at design time

A first category of counter-measures consists in addressing the protection of resources (or com-
ponents) at design time through the integration of security mechanisms. This may concern both
the virtual machines and the hypervisor of the architecture.

Protection of virtual machines

The protection of virtual machine resources can be performed at various levels. Counter-measures
can be considered at the OS kernel. For instance, the address space layout randomization
(ASLR) method permits to prevent the exploitation of memory management vulnerabilities [140].
From an architectural viewpoint, monolithic OS kernels may facilitate security attacks due to the
lack of isolation amongst kernel subsystems. PerspicuOS [36] addresses this issue, by fragmenting
the OS kernel code with an isolation of privileges. The nested kernel is the OS kernel subpart
whose memory access is privileged, while the outer kernel corresponds to subsystems relying on
inner kernel API for memory access. These APIs virtualize the MMU (Memory Management
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Unit) to enforce protection on the outer kernel memory access. The isolation of the OS kernel
components argues in favor of unikernels, since the minimalism of their architecture leads to the
dispatching of hardware management routines accross several unikernel VMs.

The counter-measures also concern the applications of virtual machines, as they represent
a major entry point. The variety of applications and runtime environments to be considered in
that context overpasses the scope of this state-of-the-art. This often supposes specialized security
mechanisms dedicated to a given application. Protecting an application from an untrusted
execution environment is not a novel issue. Solutions such as XOMOS [80] address this issue, but
suppose important requirements regarding the architecture. Shielding the application execution
is also an interesting approach to protect applications from malicious OS. For instance, Haven [15]
exploits the Intel SGX technology to provide a protective layer against OS-based and physical
attacks. The usage of unikernels constitutes also a solution to have a minimal code base and
reduce the attack surface. In addition, as the runtime environments are constrained by the
unikernel framework, this restricts the complexity of their support from a security perspective.

From a software management viewpoint, package managers may be securized and may
contribute to prevent attacks on virtual machines. Approaches such as [24] introduce package
signature mechanisms to deal with man-in-the-middle attacks, as well as package alterations.
Complementarily, [3] exploits SAT solving techniques to cope with dependency solving issues.
In the case of unikernels, the software management is performed outside the virtual machines,
reducing the consequences of its flaws to the supported appliance.

Protection of the hypervisor

The hypervisor provides an execution environment to the VMs, enabling them to run in ac-
cordance with the VMM properties [125]. In that context, [146] proposes the use of hardware to
protect VMs from the host, by enforcing isolation through hardware resource access management
and privacy based on a trusted platform module (TPM). However, this counter-measure supposes
important prerequisites on the hardware architecture, which may not be considered in practice.
Additionally, [79] introduces a method for filtering hypercalls and checking their integrity at the
invokation. Virtual CPU context integrity checks as well as virtual memory encryptions are
enforced during the execution of the hypervisor. In the area of OS-level virtualization, the Intel
safeguard extension is used by SCONE [7] to protect containers against untrusted execution
environments. This framework provides the necessary building blocks to design enclaved linux
containers, that are resilient against tampering attacks from the OS, with a limited trust com-
puting base (TCB). SCONE uses a limited pool of threads that are mapped with ones from the
untrusted OS. The system calls are performed asynchronously with the assistance of a module
outside the enclave. Complementary, the exploitation of command channels can be avoided by
obfuscation methods, as detailed in [26]. [168] also describes a solution to CPU monopolization
attacks, by switching virtual CPU scheduling to alternative methods (e.g. randomized scheduler,
Bernouilli scheduler and uniform scheduler) to limit flaw exploitations.

The granularity of the hypervisor architecture also impacts on security. In order to avoid a
monolithic architecture, [34] uses hypervisor virtualization features to decompose management
OS capabilities across dedicated service VMs. These VMs are framed by coercitive security
constraints, such as hypercall restrictions, security audits and frequent reboots. However, this
approach only focuses on the management console segmentation, and does not address the in-
ternal subsystems of the hypervisor. The NOVA [145] hypervisor goes further, by proposing a
micro-hypervisor architecture. A minimum trusted computing base (TCB) resides on the host
kernel (micro-hypervisor), while each virtual machine dedicated VMMs are executed in the user
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space, meaning host device drivers and remaining services. The lack of maturity of this approach
introduces limitations regarding guest OS compatibities.

It is also important to cope with networking and storage security. In that context, the
enforcement of access control security policies on VM resources is explored by the sHype hypervi-
sor [138]. This solution, based on Xen, enables the enforcement of policies related to the manda-
tory access control (MAC) on VM resource access, including network communications, standard
I/O communications and shared memory. More precisely, the reference monitor enforces the
policy on event channel operations, shared memory requesting and domain management oper-
ations. The presented solution is limited to access control enforcement with the MAC model
on a single hypervisor instance. TVDSEC [150] addresses the access control policy enforcement
over several hypervisor instances. In return, only the enforcement over control flows is consid-
ered. Networking may also serve for performing resource quarantines: the NICE framework [32]
exploits a network controller to put in a quarantine state VMs that are potentially compromised.

2.4.2 Minimization of the attack surface

A second category of counter-measures concern the minimization of the attack surface, by ver-
ifying the properties and restricting the capabilities of resources. In particular we focus on
verification and capability dropping techniques.

Formal verification can be applied to both the OS kernel and the applications of virtual
machines. It permits to assess the security properties of the components of the architecture,
but also to verify the design of security mechanisms (e.g. cryptographic libraries). For instance,
Klein et al. [71] introduces the design and the implementation of a micro-kernel, SEL4, featuring
formal specifications. It relies on the Haskell purely functional programming language. The
source code can be automatically translated into a formal specification that is then checked.
The Hyperkernel [111] project proposes an OS kernel that can be assessed using the Z3 SMT
prover. This OS makes use of the hardware-based virtualization feature to enforce an isolation
between the kernel residing in root-mode and the process running in non-root mode. These
approaches may imply an important cost for modifying/extending the code framed for formal
specifications, and often suppose to define a modular architecture to prove the properties of
components independently. Alternative approaches have also emerged to protect applications
and guarantee security properties, without implying formal checking. Typically, virtual ghost [35]
is a framework to protect user applications from an untrusted operating system. It enables the
applications to control their own operating system-proof sandbox, and a layer interleaving the
OS and the hardware is responsible for enforcing the sandbox isolation.

It is also possible to apply capability dropping techniques. Hardening methods are part
of them and permit to reduce the attack surface of a system, by imposin a system to reduce
its attack surface, by constraining parameter values and imposing (security) software compo-
nents. Most applications come with their specific recommendations with respect to hardening.
In addition to authorization restrictions and unnecessary software dropping, address space layout
randomization enforcement is recommended. The images of resources can also be hardened in
such a way that their applications are dedicated to a specific purpose, while considering their
lifetime is restricted in accordance. A directory of unikernels is proposed in [89], facilitating
the usage of constrained and ephemeral virtualized resources. The outsourcing of in-VM
software management contributes also to this hardening. Most operating system images are
provided with their software management tools. Therefore, the presence of those tools in the VM
image can be questioned, as most Delegating the software management to the image manufac-
turing process contributes to protect VM applications against related attacks and compromises.
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An example of such outsourcing is given in [24], in accordance with security criteria. However,
this approach supposes that (i) the VM image manufacturing chain is trusted and (ii) the VM
instances cannot receive security updates, leaving long-leaving VM instances vulnerable to new
attacks, and arguing in favor of short-living VM instances. In that context, we can also restrict
the virtual hardware environment. Embedding unused hardware increases the exposure to at-
tacks. An example of such protection is given in [160], where the authors export the virtual
hardware environment stack to the VM itself. The solution is based on a modified version of
the KVM hypervisor delegating its monitor to the VMs. It increases the isolation between the
hypervisor and the VM, and permits a finely tailored virtual hardware environment for VMs.
However, this implies important modifications in the code base of the hypervisor, requiring a
per-hypervisor engineering, which has not be performed on other hypervisors than KVM.

2.4.3 Adaptation based on security programmability

Counter-measures are efficient at reducing the attack surface, but they have to constantly be
adapted over time to cope with new threats and attacks. The programmability of resources
and their security mechanisms contribute to this required adaptation. It can be driven by an
orchestration activity relying on monitoring results.

The monitoring of resources can be performed based on introspection techniques. For
instance, VMwatcher [64] permits to determine the internal state (memory and filesystem) of
virtual machines. This enables to outsource some security mechanisms such as in-VM malware
detection. Authors of [30] propose similar techniques, but applied from the guest OS during
the execution phase. Active monitoring approaches, such as the LARES architecture [122],
are also applied to observe virtual machines based on dedicated agents or probes. Detection
approaches, such as the NICKLE framework [131], permit to identify and prevent rootkits.
Finally, the hypervisor introspection is also applicable to VM virtual hardware environments, as
developed by Slick [10] and TVDSEC [150]. The first one relies on a modification of the hypervisor
(experimented in KVM) to track the activity of VMs on virtual storage, while the second one
focuses on tracking VM networking flows. The monitoring may also consist in the identification of
vulnerable configurations related to components of the virtualization architecture. For instance,
the approach in [13] proposes a SAT solving method for supporting resource management. It
permits to detect the presence of configuration vulnerabilities in preventive manner, considering
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the maintenance operations that are available.
The analysis of monitoring results can then drive orchestration activities in virtualization

and cloud environments. An efficient and consistent orchestration is an important aspect to
deploy and coordinate security mechanisms. Some efforts, such as [120], exploits orchestration
languages to support access control policies in the area of virtualized network functions (VNF).
The security policy mining contributes to the coherency of the orchestration by extracting high-
level policy from entities enforcing low-level ones. Work in [55] applies this approach to extract
network-wide access control policy from the configuration of multiple firewalls. Orchestration de-
pends on the programmability of resources and their security mechanisms. To enforce security
decisions taken by an orchestrator, the resources of the virtualization architecture can be dynam-
ically reconfigured through programmability facilities. These reconfigurations enable to reduce
the attack surface (e.g. setting up authentication) or to mitigate the attacks (e.g. isolating a
compromised host through firewalling). Considered resources include the different components
of the virtualization architecture, but also security mechanisms. We can distinguish different
cases: (1) components supporting reconfigurations at runtime can be managed through their
configuration interfaces, (2) statically-configured components that are restartable, can be modi-
fied by changing the static configuration alteration and restarting the instance, (3) components
that are non restartable (nor reconfigurable at runtime) can be addressed through dedicated
methodologies, such as dynamic software updates developed in [156] using IncludeOS unikernels.
We can also notice some recovery techniques, such as the TASER intrusion recovery system [50],
capable of tracking the activity of a virtual machine, and recoverying its configuration to clean
state after an attack.

2.5 Conclusions

In this chapter we have described different virtualization models, namely virtualization based
on type-I and type-II hypervisors, OS-level virtualization and unikernel virtualization. We have
detailed their design principles and relationships in order to infer a reference architecture, that
serves as a support to our security analysis. We have then analyzed the different vulnerabilities
that may affect the components of this architecture, and identified related attacks, in view of
existing security threats. We have then highlight several counter-measures and recommendations
with respect to our cloud security context.These recommendations are synthesized on Fig. 2.8,
in line with different phases related to the lifecycle of cloud resources. These recommendations
concern more specifically the integration of security mechanisms at the design time, the min-
imization of the attack surface, and the programmability of security mechanisms. They serve
as a basis to the elaboration of our software-defined security approach for distributed clouds.
Unikernel virtualization offers different opportunities to reduce the attack surface based on their
simplified architecture, and to integrate security mechanisms at an early stage during the building
of unikernel images. The programmability of resources, in phase with the security orchestration,
can drive the generation of such unikernel resources. In the next chapters, we will first in-
troduce an architecture supporting security programmability in a multi-cloud and multi-tenant
environment. We will then define different mechanisms for the on-the-fly generation of protected
unikernel resources. Finally, we will extend an orchestration language to drive the generation of
the protected resources, in accordance with different security levels.
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3.1 Introduction

Cloud computing permits to build elaborated services and applications based on multiple com-
puting resources, such as virtual machines, network devices, software components, themselves
provided as services that can be easily deployed through the Internet. It supports an as-a-service
scheme with a transparent access to resources and an outsourcing of management activities to
the cloud provider. This separation of roles permits to optimize the allocation and usage of
resources, but it may also introduces additional management complexity due to the cloud dis-
tributed nature. We remind that the cloud infrastructure and its applications may typically be
divided into isolated sets of resources called tenants, corresponding to different ownerships and
requirements, defining the multi-tenancy property. Another property comes to the facts that the
resources may be distributed among several infrastructures, as each of them may be specialized
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in a dedicated processing. Distributed cloud can be defined by the conjunction of the multi-
tenancy and multi-cloud properties. In this context, security management has become a major
challenge. The dynamics of cloud infrastructures induced by their on-demand self-service, rapid
elasticity and distribution has outrun traditional security management, while the ubiquity and
high availability of cloud resources make them attractive targets for attackers [4].

Exploiting autonomic and programmability mechanisms opens new perspectives for enabling
such a security management. Autonomic strategies permit to address the scalability issues in-
duced by large and distributed cloud infrastructure resources, by delegating part of the man-
agement tasks to the environment itself. In particular, this may concern the management tasks
related to self-protection and self-configuration. The goal being to maintain a security level for
services in a distributed cloud, based on the activation or deactivation of available countermea-
sures. In addition, network programmability has already shown its advantage for software-defined
networking by separating the network infrastructure into two separate planes, i.e. the data plane
and the control plane, and contributing to its dynamic configuration and adaptation. Similarly,
there is an important need for supporting software-defined security in distributed clouds.

In this chapter, we propose a software-defined security architecture for distributed clouds, and
detail its main components and their interactions. We also provide an analysis of this solution
based on a set of validation scenarios corresponding to a realistic use case. The architecture
permits to specify security policies, and enables their automatic enforcement in a multi-tenant
and multi-cloud environment. Security mechanisms are dynamically configured based on changes
that may occur in the distributed cloud. This architecture serves as a first building block for our
approach, and is complemented by the on-the-fly generation of protected unikernels (detailed
in the next chapter), and the extension of the TOSCA orchestration language (described in
Chapter 5).

The remainder of this chapter is organized as follow: Section 3.2 gives an overview of existing
work related to our architecture, complementarily to the state-of-the-art. We then describe the
concept of software-defined security in Section 3.3. The proposed architecture, its components
and their interactions are detailed in Section 3.4. We then evaluate this architecture through a
set of validation scenarios, and discuss implementation considerations in Section 3.5. Finally, we
summarize the contribution of this chapter in Section 3.6.

3.2 Related Work

The security of cloud infrastructures has already been largely explored in the literature, in par-
ticular through different architectures and frameworks. [157] focuses on challenges related to
policy-based security management in that context. It includes the specification of a cloud secu-
rity policy, the support for security decisions, as well as the certification of security components.
In the same manner, the TCloud framework [153, 18] proposes to enforce a security policy with a
trusted cloud stack (trustworthy openstack). This policy does not mainly focus on the protection
of cloud resources, but rather consider the resilience through the use of multiple infrastructures.
The framework provides infrastructure-level and platform-level security components, such as
an access-control-as-a-service subsystem, a bayesian-fault-tolerant middleware and a relational
database service exploiting other Tcloud components as building blocks. They might be compati-
ble with multi-cloud environments, with a hardened build of OpenStack environments. However,
these solutions do not specifically address self-configuration mechanisms, nor the management is-
sues induced by multi-cloud and multi-tenancy properties. The Iceman architecture [40] discusses
a secure federated inter-cloud identity management approach. It promotes identity self-service
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for each cloud of a federation, increasing the granularity of the access control in those multi-cloud
environments. The authors of [135] proposes a cloud management framework able to deal with
multi-tenancy, based on the XACML architecture (described later in this section). The security
policy model combines benefits from the role-based access, the attributes-based access and the
task-based access models. But this one is limited to access control policies and cannot support
other security features. Similarly, PaaSword [152] is a framework employing the XACML ar-
chitecture to ensure the privacy of user data manipulated by cloud applications through data
encryption and access control. The framework proposes an holistic and proactive definition of
entities involved in the security policy through the annotation of the model source code. It is
however not designed to support additional security features or the modification of the entity used
by the security policy without a complete cloud application redesign. The proposed architecture
is independent from the available security mechanisms and addresses their self-configuration in
a distributed cloud. The SDAC framework [58] generates security policies for the access control
in multi-tenant and distributed infrastructure environments: the architecture uncouples access
control enforcement in a dedicated plane from its logic. The later is organized in three planes.
First, the application plane specifies and customizes the cloud-wide security policy. Second, the
control plane hosts the cloud-wide policy taking into account each tenant of the cloud service.
Third, the policy plane contains tenant specific policies, and interfaces with the enforcers. The
main shortcoming of this architecture is its support for security features, which is limited to
access control.

In the area of programmability, software-defined networking (SDN) permits to distinguish
the control plane making decisions about where the traffic should be sent from the data plane
forwarding packets. This paradigm enables a dynamic and adaptive policy enforcement. It may
also serve as a framework to leverage infrastructures security, as stated in [56]. For instance,
the Flowtags framework described in [44] enables the integration of middleboxes for chaining
security functions whose composition is supported by SDN controller. [75] proposes a framework
for enforcing a network security policy through a set of middleboxes. The solution considers an
exhaustive packet tagging to direct network traffic to a set of middleboxes corresponding to the
security policy. But, this solution only considers middleboxes for instantiating security mecha-
nisms. Authors of [61] explore how to exploit the SDN paradigm to build a chain of security
functions, including intrusion detection systems and firewalls, to protect smart devices. IETF
has also explored the interfacing of SDN-based security services with network security func-
tions [62]. The NICE framework [32] exploits the switch programmability to mitigate network
intrusions and to manage compromised hosts in cloud environment. The logic of the vulnerable
hosts and intrusions is dedicated to an IDS (NICE-A) and a control center. The later stores
VM profiles regarding vulnerabilities, alerts and traffics, while an an attack analyzer supports
the decision taking process and a network controller drives the programmable network equip-
ments. Such approaches take advantage of SDN with respect to security policy enforcement.
Important efforts have also focused on the verification of security chains. For instance, Veri-
Con [11] combines a language for specifying SDN policies with an approach to check whether a
policy verifies invariants expressed in predicate logic. In the same manner, FlowChecker [141]
represents the network as a binary decision diagram (BDD), whereas properties are expressed in
computation tree logic (CTL). However, the model based on BDDs requires a certain expertise
of formal methods, which cannot be generally expected from network operators. In our context,
we are focusing on a software-defined security framework to protect distributed cloud, in line
with software-defined networking, but not limited to network enforcement considerations. The
autonomic computing paradigm provides a framework for self-management activities, and relies
on several main areas: self-configuration, self-optimization, self-protection and self-healing [68].
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Although it does not bring a formal distributed cloud support, it may introduce the negotiation
among independent components. This approach may deal with exhaustive enforcement issues, as
autonomic components can continuously enforce the security policy and adapt to the changes in
their action perimeters. The two previous paradigms do not directly deal with distributed cloud
issues. But, they provide important building blocks for supporting security policy enforcement
and defining a security management architecture in that context.

With respect to security policies, the OASIS consortium introduces two standardized lan-
guages: XACML (eXtensible Access Control Markup Language) for representing and exchanging
security policies [19] and SAML (Security Assertion Markup Language) for specifying security
statements [92]. The XACML specification also defines a reference architecture for the specified
policy. It isolates the components in charge of the enforcement (referred as policy enforcement
point) from those hosting the policy (the policy retrieval point) supporting enacting logic (the
policy decision point and the policy information point) and the policy administration inter-
face (the policy administration point). The main limitation are twofold. First, the XACML
specification is closely related to the access control security feature and makes other feature
hardly addressable. Second, this architecture is dedicated to a reactive enforcement of a secu-
rity policy. It does not provide any workflow to proactively enforce a security policy through
Policy Enforcement Points (PEP). This approach remains relevant, as the XACML defines mod-
ular components for the security enforcement. Primelife [6] presents an extension of XACML
accounting for user privacy during the decision taking process. It relies on an access control
decision function (ACDF) component, in order to minimize the transmitted informations to the
access control monitor. Besides, an architecture and use-cases featuring XACML and SAML
in distributed environments have been detailed in [86], validating the usability of XACML in
distributed systems. However, it raises some limitations, such as the need for a high granularity
of sub-policies and the difficulty of maintaining an encoded security policy. Moreover, those two
languages address specifically the access control policy specification and enforcement. The lan-
guages and formats introduced by the SCAP framework constitute also an interesting support.
They cover seven complementary format specifications that are exploitable for automating secu-
rity management in distributed cloud [158]. The description of the platform requiring protection
can rely on the common platform enumeration and common configuration enumeration formats.
The scope of addressed vulnerabilities is tackled by the common vulnerability enumeration for-
mat and the open vulnerability assessment language. Their detection can be supported by the
extensible configuration checklist description format and the open checklist interactive language.
The impact of vulnerabilities can be evaluated based on a scoring, with the common vulnerability
scoring system. The SCAP framework is closely tied to vulnerability management and system
hardening.

Table 3.1 synthesizes and compares the different architectures and frameworks mentioned
below. In particular, we have determined their compatibility with the multi-cloud and multi-
tenant properties. We have also indicated the scope of protected cloud resources, as well the
types of security features they enforce. Of course, the scope of resources restricts the enforcement
perimeter for the security features. We have also assessed the support for the self-configuration
of resource protections, and the level of technical coupling with respect to security policies.
Although several existing work, such as the SDAC and PaaSword approaches, are close to address
the different criteria of the table, their enforcements remain strongly focused on specific types of
resource protection.
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[135]

4 4 Unspecified
cloud

resources

Access
control

8 High
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Table 3.1: Comparison of security architectures and frameworks for distributed clouds
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3.3 Software-Defined Security Overview

Software-defined security (SDSec) can be seen as a strategy enabling the specification and the
enforcement of security policies through a decoupling into two planes, similar to a sofware-
defined networking approach. The policy-related decisions are performed in a security control
plane, while being enforced by the programmability of a security resource plane.

3.3.1 Objectives

The SDSec approach is motivated by the four main objectives described below.

Consistency of security management. The SDSec approach promotes a consistent security
management amongst resources that require protection. It aims at facilitating the alignment of
configurations related to security mechanisms with respect to a security policy. The scope of this
policy is not limited to a local technical context, but can address an arbitrary set of resources
representing a whole service and the infrastructure supporting it. The decision-taking process
defining resource security configurations is integrative, and takes into account the current state
of resources in the enforcement perimeter.

Independence with respect to the resource technical context. The security enforcement
of the SDSec approach is agnostic from the technical nature of the resources to be protected,
and relies only on the exposed interfaces. This is particularly important in a multi-cloud and
multi-tenant environment, where security mechanisms may be implemented differently.

Support for multiple security features. The SDSec approach is capable of supporting
multiple security features (e.g. cryptography, access control, intrusion detection). To achieve
this, each security feature has to provide its own logic to the security management, and the
corresponding security mechanisms capable of enforcing the decisions.

Decreasing the operating expenses. From an exploitation perspective, the deployment of
a SDSec approach aims at reducing the operating expenses with regard to the exploitation of
protected services. It facilitates the deployment and the maintenance of the protection over cloud
services.

3.3.2 Design principles

To meet these objectives, the SDSec paradigm is based on several design principles for a frame-
work or a platform implementing it.

The SDSec approach imposes the decoupling of security management into two planes. The
security control plane is in charge of interpreting the security policy and performing the decision
taking process. It may rely typically on a security orchestrator. The security resource plane cor-
responds the resources requiring protection, and the security mechanisms in charge of protecting
them. These mechanisms are security enforcers, that are usually not involved in the decision
taking.

These two planes impact on the deployment and operation of security features. The logic
behind a security feature is left to the security control plane, corresponding to orchestrator
capabilities. Dedicated mechanisms in the security resource plane provide the necessary material
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Figure 3.1: SDSec architecture in a single-infrastructure single-tenant environment

to enforce this logic. Therefore, each security feature can be abstracted as a capability for the
security orchestrator and a set of security mechanisms.

The interactions between these two planes are restricted to the configuration interfaces of se-
curity mechanisms. These interfaces, enabling security programmability, are exploited to trans-
mit the necessary information, so that the configuration of security mechanisms are aligned with
the security policy.

3.4 Software-Defined Security Architecture

We propose a software-defined security (SDSec) architecture for protecting a distributed cloud.
This architecture is consequently composed of two main planes, called respectively the security
control plane and the security resource plane (as depicted on Figure 3.1). It exploits autonomic
mechanisms within distributed cloud infrastructures, to enable cloud resources to be dynami-
cally protected according to a given policy. More specifically, the security policy model includes
a global security policy (GSP) which formally defines the security objectives of cloud resources.
It is then translated into several tenant-level security policies (TLSP), providing the security
statements / rules that must be verified by specific resources at the tenant level, within the dis-
tributed cloud. These security statements are then enforced on cloud resources, i.e. virtualized
infrastructures, virtual machines and software products. They aim at constraining the behavior
of these components and protecting them based on counter-measures available within the dis-
tributed cloud. The enforcement should be performed dynamically, and meet adaptation and
automation properties. Any changes on the protected resource state or in the infrastructure are
taken into account in the enforcement. No human operator interventions are needed to maintain
the enforcement. The policy decisions related to the enforcement are automatically performed
according to contextual and security criteria.

The components of the architecture, part of the security control plane, include the security
orchestrator and the policy decision points (PDP). The orchestrator hosts the global security
policy (GSP), and exposes it through a dedicated interface to PDPs specific to tenants, in the
form of tenant-level security policies (TLSPs). It receives enforcement feedbacks from the pol-
icy decision points (PDP). These interactions are supported by the security discovery protocol,
enabling the PDP to identify the security orchestrator, and to fetch its security policy. The com-
ponents, part of the security resource plane, correspond to the policy enforcement points (PEP).
They correspond to programmable resources enforcing the security statements / rules, using the
security statement protocol. This protocol permits a proactive security policy enforcement on
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Figure 3.2: SDSec architecture in a multi-cloud and multi-tenant environment

specific categories of cloud resources. The PEPs may also solicit a PDP for taking a security
decision, corresponding to a reactive enforcement, with the security decision requesting protocol.
The automated configuration of security mechanims enable a lower coupling with respect to the
orchestration. Contrarily to a regular orchestration addressing requests and expecting feedbacks,
the security orchestrator adopts a more passive approach. It is supported by the PDPs, that are
capable of taking specific decisions in accordance with their enforcement contexts. This architec-
tural design, which is relatively generic, permits to cope with the multi-cloud and multi-tenant
properties of distributed cloud. It addresses potential heterogeneous infrastructures that collab-
orate to provide a given cloud service, and the case of multi-tenancy that leads to define specific
security requirements for each tenant of a given infrastructure.

We detail the roles and functioning of the components of this architecture on Figure 3.2.
This figure makes the assumption that each PDP is dedicated to a single tenant, which is a
simple interpretation of software-defined security in this multi-tenancy context. We consider
the presence of a regular cloud orchestrator (CO) in charge of managing cloud resources. Even
though this component is not meant to be a part of the proposed security architecture, its
supposed presence allows taking into account the changes on cloud resources. This component
may also corresponds to the manual intervention of system administrators, or to the automatic
changes due to one or several orchestrator(s).

3.4.1 Security Orchestrator

Amongst the architectural components, the security orchestrator (SO) is responsible for the
management of the GSP, its interpretation and distribution in the form of TLSPs. The GSP
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policy is meant to be enforced on the distributed cloud, and so, on multiple collaborating cloud
infrastructures with different tenants. The interpretation is influenced by feedbacks provided
by the enforcement. In line with the XACML terminology [19], the security orchestrator is
similar to a Policy Administration Point (PAP), allowing the storage of the GSP policy, and
its translation into TLSPs. The changes operated on the GSP policy have to be propagated to
the whole enforcement perimeter. Contrarily to the cloud orchestrator, the security orchestrator
is not meant to manage cloud resources. Consequently, the instantiation, the removal or the
reconfiguration of cloud resources is not endorsed by the security orchestrator.

However, this highlights the need for the security orchestrator and the cloud orchestrator to
collaborate. For instance, the security orchestrator requires to be noticed in case of deployments
of new cloud resources, in order to enforce the GSP policy on them. In the same manner, the
cloud orchestrator have to remove a resource and reconfigure its workflow, when the security
orchestrator requests its removal for security purpose. This collaboration is represented on the
left part of Figure 3.2, by the double arrow between the two orchestrators. An overview of
the activity diagram of the security orchestrator is given on Figure 3.3. The orchestrator does
not push the TLSPs to the PDPs. This design choice sustains the isolation of tenants among
each others and with the cloud administrator, as required to fulfill the multi-tenancy property.
These TLSPs must be attached to meta-data to enable PDPs to fetch only the policies they are
concerned with, by discriminating each TLSP according to enforcement context criteria. The
policy has to be exposed through a dedicated interface accepting incoming connections from
PDPs (with the use of the security discovery protocol). Another interface assumes the reception
of all PDP enforcement feedbacks. The determination of the exposed TLSPs (as well as the
notification sent to the cloud orchestrator) is correlated to the GSP policy, the PDP feedbacks
and the notifications that may be sent by the cloud orchestrator.

3.4.2 Policy Decision Points

The Policy Decision Points (PDPs) play a central role in this software-defined security archi-
tecture. They serve as intermediates between the security orchestrator and the PEPs enforcing
policies on cloud resources. More precisely, the PDPs are in charge of fetching and hosting the
TLSPs using the policy security discovery protocol, and locating their PEPs by invoking the
enforcement discovery protocol. They support the interactions with PEPs by collecting their
feedbacks and responding to security requests in accordance with the hosted TLSPs. In our
SDSec solution, they enact the decision taking process of the security control plane. Delegating
this activity to a tenant-specific component prevent any interference of other tenants on the
enforcement of security features. This is particularly critical, when enforced security features are
directly related to the confidentiality of the cloud resources in the tenant, such as cryptography
or access control. According to the XACML architecture [19], the PDPs assume different roles:
the role of PDPs providing authorization decisions, but also the role of policy administration
points (PAPs) with respect to TLSPs. Figure 3.4 draws a comparison between the XACML
architecture [19] and the PDP. All the components from the XACML architecture fit in our
SDSec architecture, showing its ability to handle the access control security feature. However, it
diverges on the support of a pro-active enforcement over resources requiring protection. PDPs
have to take into account external informations, during the interpretation of their TLSPs. For
instance, a time-regulated access control policy requires an access point to a system clock. As this
parameter cannot be generalized to all PDPs of the enforced perimeter, the PDP has to propose
an extensible interface able to communicate with third-party security information providers.
These providers are part of the security control plane. With the XACML architecture, these
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Figure 3.3: Activity diagram of the security orchestrator

third-party resources are assimilated to Policy Information Points (PIPs). Besides, the PDPs
maintain several meta-datas describing their decisional capabilities, which are directly related
to their enforcement context. These meta-data are important for the security policy discovery
protocol, as they enables the PDP to determine the TLSP policy adequate to its enforcement
perimeter. Consequently, the security statements intended to the PEPs are directly related to
the stored TLSPs, modulated by the feedbacks given by the PEPs, and eventually, by the PIP
contents. Figure 3.5 gives a summary of the behavior of a PDP.
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Figure 3.4: Comparison of our SDSec architecture with the XACML architecture

3.4.3 Policy Enforcement Points

The Policy Enforcement Points (PEPs) are in charge of the enforcement of TLSPs for a dedicated
cloud resource. More precisely, a cloud resource refers to an instantiated resource on a cloud
infrastructure. Virtual machines, cloud services, sets of files or network functions are examples of
such resources. The considered enforcement is twofold. In one hand, the control and modification
of security parameters on the resources according to the security statements / rules enable a
pro-active enforcement. On the other hand, the insertion of security event hooks to handle
state changes and prepare associated security decisional requests paves the way for a reactive
enforcement. Examples of such security event hooks include incoming connection attempts,
configuration modifications, and the exceeding of a threshold. Besides, the objectives of the
PEPs in the architecture are not limited to their counterparts in the XACML architecture. Not
only the PEPs are able to trigger the PDPs for reactive enforcement, but the PDPs can also
start interacting with the PEPs on their own for a proactive enforcement.

Consequently, the PEPs have to expose an interface to the PDP for receiving security state-
ments, and be able to contact the PDPs to return feedbacks (after the execution of a security
statement or after an event hook), and to transmit a security decisional request. The configura-
tion of security parameters is directly dependent on received security statements. The feedbacks
are defined based on received security statements, states of considered security parameters and
event hook states. Security decisional requests are emitted by the PEPs based on event hook
states.
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3.4.4 Interactions Amongst Components

The interactions amongst the components of this software-defined security architectures is sup-
ported by different protocols, that are synthesized below:

• The Security Policy Discovery Protocol is a discovery protocol invoked by a PDP to discover
the security orchestrator and fetch a TLSP policy. The discovery process takes as inputs
the PDP meta-data, and gives back the required TLSP policies. Because of the criticality of
this protocol, its specification has to integrate technical mechanisms to protect the integrity
of informations and have to be tamper-proof.

• The Enforcement Discovery Protocol enables a PDP to discover available PEPs in its
enforcement perimeter. It therefore permits the PDP to determine its enforcement capa-
bilities. More precisely, these capabilities are expressed by available PEPs through their
enforcement meta-data, and brought back to the PDP, which determines their potential
contributions to the security enforcement. To prevent security policy information leaks to
an intruder, or prevent an intruder to weaken the security enforcement by providing false
security assessment feedbacks, the protocol has to enable the PDP to verify the authenticity
of the discovered PEPs.

• The Security Statement Protocol supports the security programmability in this architec-
ture. It enables the PDPs to generate security statements, and send them to the PEPs in
their enforcement perimeters. The feedback has to be emitted asynchronously, in case of
enforcement execution time-outs.

• Finally, the Security Decision Requesting Protocol offers to the architecture its dynamic
enforcement properties. Indeed, this protocol enables the PEPs to solicit the PDPs for
handling a security decision. This security decision request occurs when a security hook of
a PEP is triggered, and the security statement cannot be handled by the PEP itself.

3.5 Architecture Evaluation

In order to analyze and validate our proposed architecture, we have considered a set of scenar-
ios based on a realistic use case, corresponding to a cloud service provider (CSP) proposing a
Platform-as-a-Service (PaaS) solution to customers, based on world-wide infrastructures. These
scenarios are inspired from operational use-cases from Orange as cloud service provider. They
are bound to tasks that are manually performed by operators, but are expected to be automated.
This analysis permits to evaluate the applicability of the architecture to real-world issues in a
multi-tenant and multi-cloud context. From a practical viewpoint, the multi-tenancy typically
corresponds to the use of the same infrastructure by several independent customers, while the
multi-cloud property may come from the world-wide location of cloud infrastructures. We con-
sider the use case depicted on Figure 3.6. To protect its solution, a cloud service provider enforces
a security policy on its own infrastructure, and on its cloud resources instantiated by tenants.
In that context, we consider the case of a customer, deploying two virtual machines (VM) for
hosting web applications. The first VM corresponds to the European version of his application,
while the second VM corresponds to the American version.

3.5.1 Validation Scenarios

The scenarios inferred from this use case, make the following assumptions:
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Figure 3.6: Use-case supporting the validation of our SDSec architecture

1. The CSP has implemented the business/operational processes using a cloud orchestrator.

2. Each customer request is endorsed by the cloud orchestrator.

3. The customers are unable to remove the PEPs of the cloud resources.

4. The communications amongst the PEPs and PDPs are not interrupted.

5. The deployment of software stacks in the PaaS resources is governed by the cloud orches-
trator and embed the related PEPs.

6. The cloud resource manager comes with its own PEP, which is managed by the tenant
PDP.

We have analyzed a set of five scenarios, corresponding to the deployment of a new virtual
machine instance for a customer, the update of the security policy by the cloud service provider,
an attack (DDoS) targeting an instantiated virtual machine, an inter-resource access request,
and the removal of a virtual machine instance. These scenarios permit to address the whole
life-cycle of a resource in a cloud service, while covering both proactive and reactive security
enforcement.

Resource instantiation scenario

In the first scenario, depicted on Figure 3.7, the customer sets up a dedicated server associated
to his tenant, in order to synchronize and back up the informations of the instances of his web
application. The virtual machines hosting its web applications are Linux-powered, embeds a
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SSH server for administrative tasks and a web server. The chosen technical solution consists in
using a SQL server and a SFTP server in a dedicated VM stored in the European infrastructure,
which will accept connections from the two web application servers. The cloud orchestrator
(CO) processes the deployment of these two services with their respective PEPs and notifies
the security orchestrator (SO). As SFTP and SQL are newly deployed services in the tenant,
the security orchestrator assumes that the TLSP of the tenant PDP is not adapted anymore,
and modifies the exposed TLSP to this PDP. The PDP discovers the two new PEPs, fetches
the newly available TLSPs from the security orchestrator, and sends the security statements to
the PEPs. Finally, the PEP transmits a positive enforcement feedback to the PDP, and the
PDP acts likewise with the security orchestrator. This prevents the security orchestrator from
requesting the cloud orchestrator to take counter-measures against the tenant resources.

Security policy update scenario

In the second scenario shown on Figure 3.8, the security administrator of the CSP updates the
security of its infrastructure, by restricting the access of critical services only to the local network
and the CSP VPN. The criticality of a service is not defined in the GSP policy, but is delegated
to the PDP. After the update of the GSP policy and its processing by the security orchestrator,
the PDP of each tenant detects and collects updated TLSPs. All the PDPs interpret their
TLSPs into security statements restricting the critical service access.The PDP associated to the
consider customer has deduced that all SSH and SQL servers were critical. It requests their
PEPs to restrict their access and notifies the security orchestrator of the effective enforcement.
If one of the PDPs receives a PEP negative feedback and has no other counter-measure to apply,
it notifies the security orchestrator which will in turn notify the cloud orchestrator to disable
vulnerable services.
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Attack scenario

The attack scenario is depicted on Figure 3.9. The VM in charge of the European version
of the web application hosting is exposed to a Distributed Denial of Service (DDoS) attack
targeting the web server application. This VM is protected by a network appliance capable of
IP address filtering, but still has access to the effective source address of the HTTP requests.
This mechanism supports live configuration of the IP addresses whose connections have to be
blocked. It can interface with the VM webserver to retrieve the most encountered IP addresses
from the client. In-VM PEP detects the incoming DDoS attack through the increasing memory
and CPU consumptions from the webserver process, and notify the PDP when they exceed a
threshold specified in the TLSP policy. The PDP requests the IP filtering mechanism to block
the 200 most active IP addresses that are interacting with the web server. Once proceeded, the
mechanism replies with a positive enforcement feedback. Once the DDoS attack is countered,
the webserver resource consumption reverts back to a normal state, and the VM PEP notifies
about the effective TLSP enforcement with a positive enforcement feedback.

new threshold param.

normal threshold
filtering proceeded
IP filtering req.

threshold alert
PEP-A: PDP: PEP-B:

Figure 3.9: Sequence diagrams of the attack scenario
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Access request scenario

The next scenario corresponds to an access request depicted on Figure 3.10. The cloud service
provider has defined in its GSP policy, that the used credentials for the connections among cloud
resources have a limited lifetime, and have to be regularly changed. The verification of the
validity is enforced by the PDP using a third-party module. Meanwhile, the client has set-up an
automatic back-up process between the backup server hosted in the European infrastructure and
the production server located in the USA, by using SQL and SFTP transactions. The production
server authenticates to the backup server using a dedicated password. When the production
server connects to the back-up server, the connection attempts trigger the connection hooks of
PEPs related to the SQL and SFTP servers. Both of them block temporarily the connection
attempts, and make decision requests to the PDP, providing hashes of used credentials. As the
TLSP policy imposes the verification of the credential life-time, it uses its third party module to
check it. As this module has no precedent records of hashes, it concludes that the transmitted
credentials are newly created and are allowed to be used. The PDP responses to both security
decision requests are positive, and incoming connections are authorized by respective PEPs.

Resource removal scenario

The last scenario, shown on Figure 3.11, corresponds to a resource removal. The client wants to
update the virtual machine supporting the American web application by proceeding to a fresh
installation. To meet this objective, the client wants to completely remove it and reconfigure
a new virtual machine. He uses the cloud orchestrator to remove this virtual machine, which
is notified to the security orchestrator. The security orchestrator updates its GSP, to take into
account the removal of the cloud resource and checks its consequences on the enforcement: The
TLSP is updated. The PDP of the customer fetches the new TLSP policy, and stores it. Through
the cloud orchestrator, the security orchestrator starts deallocating resources to the American
VM and the PEP addresses a security decisional request to its PDP for allowing the removal.
According to its TLSP, the PDP grants the request. The PEP lets the cloud orchestrator to
complete the resource removal.

This analysis shows that all the presented scenarios can be addressed by our proposed
software-defined security architecture. However, some limitations with respect to the consid-
ered use case should be highlighted. First, the use case has dealt with a GSP policy set by
one security orchestrator. The case of multiple security administrators, with different enforce-
ment parameters, is also interesting to be investigated, while we can abstract it through the
single security orchestrator case. Second, the use case assumes that one PDP is allocated to one
tenant, corresponding to one customer. This is however only one possible interpretation of the
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multi-tenancy notion, but other ones would have made the use case unnecessarily more complex.

3.5.2 Practical Considerations

After analyzing different validation scenarios, we are discussing here practical considerations with
respect to this software-defined architecture.

Cloud environment

Before considering a software-defined security stack for our architecture, we focus on the en-
vironment and the resources we want to enforce. We address distributed cloud infrastructure
security. The retained technical solution should be a proven solution in the multi-tenancy area
as well as the multi-cloud one. Moreover, as suggested by the network filtering appliance in the
third validation scenario, some of the counter-measures are likely to rely on infrastructure con-
figuration. This highlights the need for an extensible cloud stack. In both cases, the OpenStack
cloud suite is an attractive solution, as it supports multi-tenancy through the users and region
management, and it supports the integration of additional components.

Considering the orchestration, we have to distinguish the need of a security orchestrator
based on a security policy ruling, and a regular cloud one whose actions are driven by customer
solicitation or CSP management tasks. The security orchestrator will be further analyzed in the
next subsection. The cloud orchestrator has no specific security expectation except its capability
to handle cloud orchestration notifications, and reciprocally emits notification to it. These two
requirements are related to common orchestrator features as both are linkable to basic messaging
between cloud appliances, each one issuing a request to the other and waiting for a feedback.
Therefore, no more prerequisite other than distributed cloud support is expected from them.

In the cloud resource area, our architecture is designed to be resource agnostic in the sense
that the PEPs are the only agents of the architecture depending on cloud resources. Their inter-
actions are based on resources programmability, inspection and event handling. These features
gains interest as they are related to dynamic and complex resources. In this context, virtual
machines operating systems and applications are well-suited for exploring this kind of enforce-
ment, but cannot be generalized as the only type of resources to be protected. Besides, their
nature directly influences the way PEPs are implemented: an executable cloud resource opens
the debate about whether the PEP should be totally, partially or not at all included in it while
a non-executable one excludes it.
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Architectural components

Considerations are also raised by the implementation of the framework itself. The security or-
chestration permits the coordination of the PDPs with each others and the cloud infrastructure
(through the cloud orchestrator). As such, it is a highly critical single point of failure in charge
of supervising several tenants and infrastructures. Such a criticality raises technical issues about
redundancy or distribution among the infrastructures, but also policy concerns such as handling
enforcement state transition due to GSP modification: if the modification process is not prop-
erly handled, as cloud tenant-level security policy and cloud-resource statement are not instantly
propagated (due to network or processing overhead), we can conceive that a subset of resources of
the cloud infrastructure managed by the security orchestrator can be trapped into a inconsistent
security state. This eventuality must urge the orchestrator to check the consistency of interme-
diate enforcement states, at the infrastructure level (resource enforcement state can conflicts)
and at the policy-decision level (concurrent low-level security policy can as well conflicts).

Moreover, the privacy concerns is risen with the PDP. Indeed, it can access all the PEPs it
is in charge of, and any data leak may allow an attacker to collect resource data or metadata.
Incidentally, the confidentiality of the communications between PEPs and PDPs is as critical as
the isolation between PDPs is. This statement decides the question of the relationship amongst
PDPs and tenants. To enforce a proper isolation between PDPs, it is necessary that each of
them address one unique tenant. Otherwise, one tenant could compromise a multi-tenant PDP,
and use it to fetch data from the other tenant resources.

Finally, the variability of the resources addressed by this security architecture leads to the
question of PEP design. Building one PEP for each type of resource to enforce a TLSP policy in
a cloud is not a sustainable approach as the workload for a sufficient enforcement coverage would
go too far. Thus, we should consider a more generic approach allowing an automatic adaptation
to cloud resource. An adaptive design and instantiation of PEP is a interesting response element,
as the core logic of the PEP could be specified, before being compiled and adapted on-the-fly to
the particularities of the resource to protect. Moreover, such an approach could possibly take
advantage of the cloud resource build environment: if this PEP design and integration process
is able to extract the required information from cloud resources being constructed, it would lead
to an automatic and adaptive design of PEPs tied to cloud resource dynamics.

3.6 Summary

We have proposed in this chapter a software-defined security architecture for protecting dis-
tributed clouds. It relies on the programmability introduced by software-defined security, and
addresses the constraints induced by multi-tenancy and multi-cloud properties. We have detailed
the different components of this architecture, including a security orchestrator, policy decision
points (PDPs) and policy enforcement points (PEPs), interacting according to a dedicated set
of protocols. Based on the specification of a security policy, the architecture supports the dy-
namic configuration of security mechanisms to adjust to contextual changes, based on available
resources and counter-measures. It enables a low coupling with respect to the orchestration,
through the use of PDPs. We have evaluated the proposed solution and discussed practical
considerations, through a set of validation scenarios inspired from operational use-cases from
Orange as cloud service provider. The proposed approach has raised several challenges with
respect to the design of the considered components, and the specification of security policies in
a multi-cloud and multi-tenant context.

This software-defined architecture is only the first building block of our solution. In the next
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Figure 3.12: Integration of the SDSec architecture with our unikernel generation framework

chapter, we will focus on the second building block, corresponding to the on-the-fly generation of
protected unikernels. The objective is to leverage security programmability in cloud environment
through the generation of these unikernels, whose benefits have been highlighted in the state-
of-the-art. Figure 3.12 overviews the integration of our SDSec architecture with the unikernel
generation framework.
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4.1 Introduction

In the previous chapter, we have shown that applying the software-defined paradigm offers
new perspectives to tackle the issue of security management complexity in distributed clouds.
Software-defined security (SDSec) permits to decouple security policy enforcement from their
specification by abstracting resources technical considerations. The security control plane is in
charge of security decisions through business-logic constraints, while the security resource plane
represents the resources to be protected and dedicated programmable security mechanisms ac-
counting for technical constraints. The provided security should take into account the changes
affecting the resources and their context, in order to dynamically adjust the enforcement and
maintain the compliance to security requirements. The adequacy of these mechanisms with al-
located resources directly impacts the coverage and efficiency of security management over the
infrastructures to be protected. Unfortunately, the heterogeneity of addressed resources requires
more and more specialized mechanisms, increasing the management costs and reducing the ex-
haustiveness of protection. Performance improvement efforts have led to several initiatives in
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the area of system virtualization, in order to reduce the footprint of appliance execution environ-
ments. The thriving adoption of containerization has successfully contributed to this objective,
as well as refining the granularity of cloud scalability, improving their portability and promoting
new appliance lifecycles (e.g. DevOps [66]). However, containerized applications have to eschew
OS kernel modifications, banning several applications that have still to comply with complex
execution driven by legacy support constraints.

We present in that context a software-defined security strategy exploiting unikernels for
protecting cloud infrastructures. These unikernels correspond to lightweight virtual machines
specially built for a dedicated application at the expense of backward compatibility, while their
performance enables a short lifespan-based usage [91]. They promote a simplified and analyzable
internal functioning, putting on an equal footing an application, its requirements and the OS
routines they rely on. We exploit their properties to reduce the attack exposure of cloud resources,
through the on-the-fly generation of highly constrained configurations with the strict necessary
for a given time-limited period.

Our main contributions, described in this chapter, are (i) specifying a software-defined strat-
egy based on unikernels to protect cloud infrastructures, (ii) designing a management framework
with a dedicated modeling to support the generation of unikernels with security mechanisms,
(iii) implementing a proof-of-concept prototype using MirageOS, and (iv) providing a perfor-
mance evaluation based on extensive series of experiments. This chapter contributions tackle
the compatibility issue between the security management plane and the resources requiring pro-
tection. Therefore, the evaluation work addresses rather the impact of this compatibility over
protected resource performances than the leveraged security management. The evaluation of the
framework is complemented by experimental results presented in Chapter 6.

The remainder of this chapter is structured as follows: we present related work in Section 4.2
and provide a background on unikernels in Section 4.3. Section 4.4 describes our software-defined
security strategy based on unikernels, with the formalization of unikernel image generation over
time. We evaluate in Section 4.5 the performances in comparison to legacy virtualization, through
an implementation prototype. We conclude the contribution of this chapter in Section 4.6.

4.2 Related Work

We have already presented work related to virtualization techniques in the state-of-the-art chap-
ter. System virtualization can be exploited for enabling third party security mechanisms to
inspect in-VM applications and communications. For instance, LARES [122] is an architecture
enforcing an active monitoring of a VM through the injection of dedicated mechanisms in-situ.
On the contrary, VMWatcher [64] addresses a semantic view reconstruction from VM memory,
to enable a non-intrusive monitoring. In the same manner, Livewire [47] is an programmable IDS
inspecting VM states. Slick [10] focuses on VM storage I/O to detect intrusion attempts. Specific
architectures also contribute to reducing the attack surface. Microkernels [81] have sustained an
OS compartmentalization approach by dispatching non critical OS features across isolated ser-
vices residing in their own memory space, but at the cost of a serious overhead. Exokernels [42]
correspond to a library OS supporting multiple process executions, but promotes routine injec-
tions to prevent inconsistent behavior in hardware resource management due to process switch.
Considering system virtualization, Drawbridge [126] is another library OS embedding instances
of system components and applications in a VM, but collaborating with a host OS to access
hardware resource securely and provide a seamless user interface. UKVM [160] is a monitor ded-
icated to the VM it runs to embed only required features to its execution. [23] sustains the usage
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Figure 4.1: Comparison of regular and unikernel VM lifecycles

of unikernels in cloud environment from a security perspective. Our purpose is to take benefits
of unikernels and their properties to support security programmability in VM cloud resources.

4.3 Background on Unikernels

We remind some important background related to unikernels and their building. Virtualization
enables hardware to be abstracted from programs by a software layer. Hypervisors are in charge
of provisioning dedicated virtual hardware environments to each program and interfacing with
hardware. Amongst virtualization models, unikernels offer new perspectives for minimizing the
attack surface.

Overview. The complexity of system architectures in VMs, relying on a full-featured OS kernel
and application runtime, gives however a glimpse of an optimization through the simplification of
these dependencies. Unikernel VMs simplify the in-VM system architecture by reducing legacy
features from the OS (e.g. multiple users support, multiple hardware resource support), restrict-
ing each VM to one application, and embracing the library OS, to enable an efficient virtual
hardware resource management. The library OS implements the hardware resource management
to a set of regular libraries that are statically linked to the applications. In return, this re-
stricts applications to cope with the hardware resources whose support is implemented by linked
libraries.

A unikernel system image embeds a single application with its dependencies. Those encom-
pass a minimal runtime together with software and hardware resources management libraries,
in accordance with the library OS concept. The software management of unikernel is performed
externally through provided building tool-stack, directly on system image before instantiation.
This approach alleviates unikernel from the in-situ software management constraint, contribut-
ing to their lightness. Management can still rely on package management mechanisms (e.g.
OPAM [113] for Mirage) or solely on source code inclusion mechanisms (e.g. IncludeOS). This
constrains refreshes on a VM configuration process performed before the VM allocation. Its
lifecycle is depicted on Figure 4.1. From our security perspective, unikernels offer interesting
properties to reduce the attack surface, by generating highly constrained configurations limited
to the strict necessary in a dynamic manner.

A unikernel instance uses a single address space for its application and its runtime. It does
not implement processes, but rather uses threads, outwitting the context switch overhead during
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Figure 4.2: Unikernel generation architecture

concurrent processing. The light footprint of unikernel VMs refreshes on their fast boot time,
and contributes to operation of short-living unikernel instance exploitation. Naturally, unikernel
images can be designed to cope with an hypervisor, be launched in a VM and interact with a
virtual hardware environment.

Building architecture. Figure 4.2 presents an architecture supporting the unikernel image
generation and allocation in a cloud infrastructure. We can distinguish different steps.

1. The building environment is provisioned with the source code of the unikernel application
to be build. This source code is expected to specify the core logic of the application and
its dependencies through the libraries to be statically linked. Its design is constrained by
the unikernel platform: usable libraries are partly or totally provided while the unikernel
platform while employed programming language are framed by it.

2. Source code dependencies are managed through packages gathering libraries by a package
manager. This one handles their retrieval from remote repositories and the management
of their versions installed locally. This software can be dedicated to the unikernel platform
or be bound to the programming language related to the unikernel platform.

3. Once all the dependencies are fetched, a toolchain is able to compile the source code and
package it into a unikernel image. The tooling is partly or totally provided by the unikernel
platform. The remainder is provided by the programming environment it is related to. The
produced image is self-sufficient, as it does not rely on any external dependencies to be
bootstrapped, except for the hypervisor they are designed to cope with.

4. This unikernel image can therefore be allocated in a cloud infrastructure, as one or several
unikernel VMs. Their execution is supported by the hypervisor and its execution environ-
ment. It exposes a virtual hardware environment compatible with the hardware resource
support of the unikernel. Those instances are driven by a regular cloud resource man-
agement. The concision requirement over unikernel VMs imposes the management to be
external.

5. The process image building and allocation can incorporate a configuration at two levels.
First, the configuration can be incorporated statically in unikernel images by altering its
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source code to constrain its execution. Passing configuration parameter through variable
definition or configuration file are examples of such configuration method. Second, the
configuration can be set dynamically to a unikernel instance by passing boot arguments
during unikernel VM allocation process.

Table 4.1 gives a synthetic comparison of regular executables supporting applications with uniker-
nels.

Regular executable Unikernel
Source code Regular application source code Regular application source code

Dependencies
Libraries to be linked
statically and dynamically

Libraries to be
linked statically

Generated output Regular executable file VM image
Instance OS process VM instance
Required runtime OS providing dynamic libraries Hypervisor

Configurability

• During build process
with source code mod-
ification.

• At startup through
command-line argu-
ments and configura-
tion files.

• During build process
with source code mod-
ification.

• At startup through
VM kernel boot argu-
ments.

Table 4.1: Comparison between a regular executable and a unikernel

This building architecture serves as a basis for our framework generating secured unikernels.

4.4 Software-defined Security Framework Based on Unikernels

We propose a software-defined security framework that exploits unikernel properties for protect-
ing cloud infrastructures. This framework permits to generate on-the-fly unikernel images that
integrate protection mechanisms. Unikernels have a less flexible configuration in comparison to
regular virtual machines, but allow for significant reduction of the attack surface. In that context,
we exploit unikernels to build highly-constrained configurations limited to the strict necessary
and with a time-limited validity. Configuration changes are supported by the generation of new
unikernel images in a dynamic manner.

As depicted on Figure 4.3, the framework components are layered on the unikernel regular
building chain. The source code of a unikernel defines the main behavior of the considered
appliance and its libraries dependencies. Those are stored in a dedicated repository. Security
mechanism requirements are interpreted from source code dependencies declaration, and those are
stored on a dedicated repository. In the unikernel image generation, every unikernel application
has its dependencies and required security mechanisms fetched and its source code compiled and
assembled in a bootable VM image. This VM can be instantiated in a cloud infrastructure, on the
top of an system virtualization environment. The management of the building process and the
VM launch are performed by a dedicated plane: while the regular cloud resource management
addresses the running application in the unikernel VM, a specific configuration management
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Figure 4.3: Software-defined security framework for cloud infrastructures with on-the-fly gener-
ation of unikernel images

aims at the application compilation or booting processes. We added the capability to handle the
configuration of security mechanisms to meet security requirements.

This strategy based on unikernels enables a more comprehensive protection perimeter. These
mechanisms are expected to address the protection of all the accessible resources of the unikernel
VM, beneficing of the library OS paradigm to include the runtime components hardware man-
agement in its scope. This extends the potential protection perimeter of security components
over resources in an instantiated unikernel VM. This also enables a highly-coupled enforcement,
by deploying security mechanisms at the building step of unikernel images. We consider the
installation of extra modules aside the application and their dependencies, but also consider
minor modifications of their source code (i.e. code patching or additional source code inclu-
sion). Unikernels provide the necessary environment to build images from source code and bi-
nary objects, and closed-source libraries requiring modifications (e.g. security hook insertion in
routines) can be evaded with another implementation, taking benefits from the library OS philos-
ophy. This tight integration dwarfs the enforcement overhead by enabling explicit collaboration
between protected resources and mechanisms. Moreover, addressing the modification of every
component of the unikernel extends the variety of potential enforcement features. We consider
here the pro-active programmability of security mechanisms: we restrict the alteration of their
configuration before their instantiation (e.g. configuration file edition, source code modification
and boot parameter provisioning).

4.4.1 On-the-fly Unikernel Generation

We formalize the unikernels and their on-the-fly generation supporting our software-defined se-
curity approach for cloud infrastructures. We consider in that context that software component
operations are enabled by software manager capabilities currently used in the unikernel ecosys-
tem. We also take into account the programmability constraints related to software-defined
security by addressing configuration management through a non-binding model, in respect with
the lack of consensus on the configuration specification model in the unikernel ecosystem. We
introduce a reference to a unitary software component integrable in a unikernel image as a mod-
ule noted m. This terminology can refer to both software packages or injectable source code files,
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which is consistent with considered software inclusion mechanisms for unikernels. The whole set
of usable software modules is identified as M , with m ∈M . Practically speaking, this matches
all the packages in the configured repositories or all the libraries in the include directories. We
also refer to c as a configuration option, and C (m) as the whole set of options applicable to a
given module m. We expect c to be a condition that can be met by the code of the module m.
Each constructible unikernel image u is encompassed in a set U . We point out u0 to be the nil
element of this set, alluding to be the minimal image on which anyone is based.

This elementary modeling enables the definitions of basic operations on unikernels. The
Install operation is the insertion of a module m in a kernel image u, resulting in a new kernel
image u’, as given by Equation 4.1.

Install :U ×M −→ U ,

(u,m) 7−→ Install(u,m) = u′
(4.1)

In the meantime, the Configure operation, given by Equation 4.2, permits to modify or alter
the code embedded within a module m installed in a unikernel image u to meet a configuration
option c, resulting in a new image u’

Configure :U ×M × C (M ) −→ U ,

(u,m, c) 7−→ Configure(u,m, c) = u′
(4.2)

Complementarily, we introduce observation operations to describe unikernel images. In partic-
ular, we define the Modules operation to get the set of inserted modules, and the Configuration
operation to get the set of activated configuration options for a given module on a unikernel
image. These operations are respectively given by Equations 4.3 and 4.4.

Modules :U −→P(M ),

u 7−→Modules(u)
(4.3)

Configuration :U ×Modules(U ) −→P(C (P(M ))),

(u,m) 7−→ Configuration(u,m)
(4.4)

Several constraints are inferred from the unikernel properties. First, the installation oper-
ation does not remove any of the modules previously installed/inserted. This is a necessary
condition to comply with the insertion mechanism, which only increases addressable routines
in in-compilation objects and package managers that do not support conflict management. In
that context, unikernel source code patching can be seen as a module insertion method. We also
assume that the re-insertion of a module does not commit any modifications to the image, to
layer the behavior of most package manager. This assertion is acceptable in the case of code
inclusion, as most libraries protect themselves against multiple inclusions based on preprocessor
directive usages. This constraint on modules is given by Equation 4.5.

∀(u,m) ∈ U ×M , u′ = Install(u,m) =⇒ Modules(u) ⊆Modules(u′)

(equality if m ∈Modules(u)) (4.5)

In addition, we conversely assume that fulfilling a particular configuration option can prevent
meeting the requirement of another one. A typical example is expecting a unikernel application
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variable to respect a value, while reconfiguring it with another one. This second constraint is
given by Equation 4.6.

∀(u,m) ∈ U ×M ,

u′ = Configuration(u,m) 6=⇒ u′ ⊆ Configuration(Configure(u,m, c),m) (4.6)

We also assume that the minimal unikernel image does not embed any module, as provided by
Equation 4.7. This condition is required to permit the building of any unikernel image with
solely the additive installation operation.

Modules(u0) = � (4.7)

Finally, we consequently state the composability of every conceivable unikernel as the installation
of multiple modules to the nil unikernel image, as described by Equation 4.8.

∀u ∈ U ,∃(mi)16i6n ∈ M N/u = Install(Install(Install(u0,m1), . . . ),mn) (4.8)

Our modeling introduces also two types of relationships to express the compatibility among
software components in a unikernel image. These are inherited from package managers [93].
The dependency relationship is addressed by the requires(m) operation, identifying the set
of modules expected in a unikernel image before the installation of a given module m. The
conflicts(m) operation points the set of modules that prevents the installation of the module m.
As a consequence, we consider that a given module is installable in a unikernel image when all its
dependencies are already installed and no conflicting ones are present, as given by Equation 4.9.

IsInstallable(u,m)⇔
(Modules(u) ⊇ requires(m)) ∧ (Modules(u) ∩ conflicts(m) = �) (4.9)

The generation of unikernel images relies on this modeling, and is given by Algorithm 1. It
describes the different phases related to the building of unikernel images with security mech-
anisms. It takes as inputs the imageSpecs enumerative data structures providing the module
and configuration dependencies, and securityRequirements enumerating additional security re-
quirements on them. The algorithm also admits the procedures Insert(datastructure,element)
for the insertion of element in the data structure datastructure and Instantiate(u) the unikernel
instantiation. On lines 2 and 3, the algorithm fetches the updated version of the imageSpecs
and securityRequirements data structures. Then, from lines 4 to 9, it exploits these two data
structures to get the specification of the image embedding the protection mechanisms. The algo-
rithm generates a new image from line 10 to 20, by initiating a blank one, and iterating over the
specifications to install required modules and configure them. The module compatibility with the
unikernel image is assessed with the isInstallable() function, which implements the Module(),
the requires() and the conflicts() operations. The instantiation is set on line 21. The algo-
rithm finally loops over these instructions each time a change in the securityRequirements data
structure is notified.

The security mechanisms are therefore directly integrated to unikernel VM instances, as part
of the application dependencies. This minimizes the enforcement disturbances due to external
factors (e.g. network connectivity issues), and contributes to dwarf the attack surface, by limiting
vulnerable communications. This approach also prevents the semantic gap [64] issue with respect
to security enforcement. The security mechanisms do not have to construct a semantic view of
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Algorithm 1 Unikernel image generation with security mechanisms for cloud software-defined
security
1: repeat
2: imageSpecs← unikernel image specification
3: securityRequirements← unikernel sec. requirements
4: for m ∈ securityRequirements do
5: Insert(imageSpecs,m)
6: for c ∈ securityRequirements[m] do
7: Insert(imageSpecs[m], c)
8: end for
9: end for

10: u← u0
11: for m ∈ imageSpecs do
12: if IsInstallable(u,m) then
13: u← Install(u,m)
14: else
15: throw exception
16: end if
17: for c ∈ imageSpecs[m] do
18: u← Configure(u,m, c)
19: end for
20: end for
21: Instantiate(u)
22: until securityRequirements changes
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in-VM data structures from the resources accessible to the hypervisor, in order to enable in-VM
resource observations and changes.

Moreover, the additional code is integrated at unikernel compilation time, as regular source
code. This permits an intrinsic integration of protective and protected mechanisms as they both
undergo the same code optimization and linking processes, leading to minimize security mech-
anism overhead. This integration before unikernel VM instantiation goes in favor of security-
by-design properties, on the condition that the remainder of the application code supports it.
Currently, the configuration of security mechanisms themselves is performed before their instan-
tiation in unikernel VMs in a pro-active manner. This means before the source code compilation
(e.g. parameters inserted in source code) or at image instantiation (e.g. booting arguments). The
configurations are highly constrained, requiring image re-building to cope with a new given con-
text. This however contributes to reduce the complexity of a further security orchestration [119,
88].

4.4.2 Benefits of Unikernels for Software-defined Security

Independently from the integration of security mechanisms at compilation time, unikernels pro-
vide multiple benefits for software-defined security, in comparison to legacy VM architectures
and containers. We detail them below.

Reduced attack surface. By requesting legacy features, by preventing unused interface and
hardware management, and by focusing on applications and their sole dependencies, unikernels
reduce the required code base for applications. This effort is also supported through the direct
implementation of hardware resource management in applications, in accordance with the library
OS principle, which evades the intermediate hardware abstraction layers. This coercive code
consolidation reduces unikernel attack surface by circumventing software flaws and exploitable
entry points. Besides, limiting the unikernel code base restricts the available capability of an
attacker having succeeded in jeopardizing one instance. The restricted interfaces with other VMs
minimize propagation vectors. The evacuation of unnecessary routines, legacy tools and legacy
program support prevents an attacker from easily weaponizing an instantiated unikernel VM, or
injecting regular exploitation tooling in it. It results in the clearance of any memory isolation
in unikernel VMs. The only remaining barrier is provided by the system virtualization. This
approach dismisses the multi-tenancy support in each VM instance, leaving unikernel VMs as the
atomic resources to address tenancy and infrastructure location. This statement is acceptable
as long as unikernel embeds a single application instance for one tenant. It even simplifies
distributed cloud security management by oughting the assimilation of applications to VMs in
the security policy specification.

Image building sanitization. The image construction tooling takes as input the unikernel
source code to process it into a bootable VM unikernel image through source code static analysis,
compilation and objects linking. The static analysis step attests the coherence of the code and its
compliance with the programming language properties. The nature of the latter directly impacts
the processing of this verification. For instance, a language featuring a strong typing system
induces a deeper memory management assessment at compilation time. By scoping the codes
of an application, its dependencies and its runtime, unikernel transposes these verifications to a
broader, more inclusive field than a regular system stack. The choice of programming language
through the retained unikernel solution therefore impacts the type of assessment conferable to a
VM (i.e. dependability, safety or performance). From a performance perspective, addressing the
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compilation tooling to a wider scope than only application contributes to reducing the weight
image footprint. On one side, applying the same software management to the whole system
architecture permits the evacuation of unneeded dependencies in areas not concerned by tradi-
tional software management. On the other side, the linking process affects wider stack and the
architecture, obsoleting legacy interfaces between system component (i.e. process switch, sockets
usage, system calls), circumventing the related overhead.

Code portability. As each unikernel image embeds an application and all the necessary soft-
ware components for its execution, its outwits traditional compatibility issues between in-VM
components. This restricts compatibility issues to the ones among the unikernel VMs and the
hypervisor and their execution environment (i.e. computing resources, storage and networking
prerequisites). Configured accordingly, several hypervisors can support the execution of the same
VM. By considering hypervisors across several infrastructures, unikernels can embrace the multi-
cloud constraint. In addition to the multi-tenancy viewpoint, this attests the compatibility of
unikernels with distributed cloud environments.

4.4.3 Reactivity Improvement through Image Pooling

As an extension of the current framework, we incorporate the feature of unikernel image pool-
ing to limit the triggering of the image generation process during a cloud service exploitation.
We propose the building of several versions of the unikernels image, each one accounting for a
different set of values for in-source-code configuration parameters. Each version of a unikernel
image diverges from the others on the value affected to a parameter. The building is performed
proactively to any unikernel image allocation. When a unikernel reconfiguration concerns a con-
figuration parameter whose new value has been accounted in the image pooling process, the
management plane solely have to deallocate the current VM, then proceed to the allocation of
the image supporting the new value of the configuration parameter. This evacuates the building
process for several reconfiguration case, dwarfing the delay for configuration update.

The components of the architecture have to undergo only minor modifications to support this
extension: the unikernel image generator only has to support image pooling while the regular
cloud management have to select to corresponding image at unikernel instantiation time.

The reconfiguration algorithm is modified to support it. Algorithm 2 presents the new version
of the generation algorithms:

• The algorithm relies on additional structures: The imagePool, defined on line 32, stores
already built unikernel images and enumerates them according to the image specification
they correspond to. The proactiveImageSpecs, defined on line 33, gathers all the specifica-
tion of the image to be built before any VM allocation. The function IsAlreadyPooled(),
defined on line 25 to 30, takes as input a reference to the image pooling structure and
an image specification and returns a boolean stating if a corresponding image has already
been built and is available in the pool.

• The image process is altered on line 22 to systematically store the generated image in the
pool structure with its corresponding specification.

• The main procedure of the algorithm proceeding the main loop is modified on lines 32 to
36 to accept the proactive generation of a unikernel image. This content is driven by the
proactiveImageSpecs structure.
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• The main loop incorporates an additional verification over the existence of a already-built
image. This verification appears from lines 41 to 45 on the algorithm.

This extension leverages several benefits to the unikernel generation architecture. First,
this extension combines a faster reconfiguration delay while still supporting the execution of
highly constrained VMs. This dwarfs the delay to set up an effective enforcement following a
policy update. Second, limiting the image generation reduces the resource consumption during
the unikernel VM exploitation. This is a critical issue in limited resource infrastructures, as
considered in edge-computing related use-cases.

The proposed extension is however subjected to two major shortcomings:

• The variating parameter provisioning alternative versions of the unikernel image is limited
to a discrete and finite set of values. The proposed extension cannot cope with the contrary
case as the proactiveImageSet structure would not be necessarily be finite, and could
not be correctly iterated over. This is a strong condition over parameters that excludes
configuration parameters from the pooling process such as continuous value range, or no
size-limited strings. From a security policy perspective, this constraint impacts the scope
of a policy that can be pooled. This shortcoming is partly circumvented by registering a
new unikernel image in the pool at each build.

• The selection of the configuration parameters to be addressed by pooling has to be delegated
to an entity with the knowledge of the relevant security parameters. This entity can be
either a human security operator or a component in the management plane. It requires a
holistic understanding of the secured unikernel resource from the management plane.

For these reasons, the resource pooling is not addressed by the remainder of this chapter.
They are however accounted in the contribution of the next chapters.

4.4.4 Integration with the SDSec Architecture for Distributed Clouds

In chapter 3, we introduced a software-defined architecture for enforcing a policy-based protection
over a distributed cloud. We focus here on the integration of this architecture with the unikernel
generation framework. As a reminder, the considered SDSec architecture is based on the following
components:

• The PEPs and the cloud resources are part of the security resource plane. They correspond
to the assets requiring protection and the programmable security mechanisms leveraging
it.

• The PDPs are part of the security management plane. They are in charge of the decision
taking process at the tenant level for security mechanisms configuration. This process is
framed by a security policy aligned with the tenant resources.

• The security orchestrator supports the security management at the scale of the cloud
service. Unlike the PDPs, it does not directly configure the security mechanisms. However,
it provisions them with the necessary elements to enable them to construct their tenant-
level security policy.

• The cloud orchestrator is not related to the protections of resource. It is in charge of the
life cycle management of cloud resources. Its behavior is aligned with regular cloud policy,
but can interact with the security orchestrator.
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Algorithm 2 Unikernel image generation with pooling features
1: function BuildSecureImageSpec(imageSpecs,securityRequirements)
2: for m ∈ securityRequirements do
3: Insert(imageSpecs,m)
4: for c ∈ securityRequirements[m] do
5: Insert(imageSpecs[m], c)
6: end for
7: end for
8: return ImageSpec
9: end function

10: function BuildImage(imagePool, imageSpecs)
11: u← u0
12: for m ∈ imageSpecs do
13: if IsInstallable(u,m) then
14: u← Install(u,m)
15: else
16: throw exception
17: end if
18: for c ∈ imageSpecs[m] do
19: u← Configure(u,m, c)
20: end for
21: end for
22: imagePool[imageSpecs]← u
23: return u
24: end function
25: function IsAlreadyPooled(imagesPool,imageSpecs)
26: if imagePool[imageSpecs] exists then
27: return true
28: else
29: return false
30: end if
31: end function
32: imagePool← Already built images
33: proactiveImageSpecs← Specification of image to be proactively build
34: for all imageSpecs ∈ proactiveImageSpecs do
35: BuildImage(imagePool, imageSpecs)
36: end for
37: repeat
38: imageSpecs← unikernel image specification
39: securityRequirements← unikernel sec. requirements
40: imageSpecs← BuildSecureImageSpec(imageSpecs, securityRequirements)
41: if IsAlreadyPooled(imagePool, imageSpecs) then
42: u← imagePool[imageSpecs]
43: else
44: u← BuildImage(imagePool, imageSpecs)
45: end if
46: Instantiate(u)
47: until securityRequirements changes
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The unikernel generation framework tackles the design of protected resources for a dedicated
infrastructures. The configuration is configurable proactively, before the VM allocation, and
reactively, during its allocation.

Several components are configured by the security management plane to meet security re-
quirements:

• The unikernel application source code is modified before the unikernel image is built, to
insert the security mechanisms. This requires the unikernel generation framework to expose
interfaces to the security management plane, and therefore to be programmable.

• The cloud infrastructure in charge of VM allocation has to interact with the security
management plane to provision the matching boot parameters. This infrastructure has to
expose interfaces to be programmable.

Therefore, the security components inside unikernel VMs are assimilated to the PEP compo-
nents. They are programmable through the unikernel generation platform and the infrastructure
driving VM instantiations. The allocated unikernel VMs are the resources being protected by
the framework. From a management viewpoint, the SDSec architecture and the generation
framework converge as well:

• The security orchestrator has no direct equivalent in the generation framework, as no service
wide security management nor collaboration with the cloud orchestrator are present in this
framework.

• The security configuration handles the security decision taking process in the configuration
of the secured resources and while accounting the knowledge to support it. This task
corresponds to the PDP in the SDSec architecture.

• The remainder of configuration and regular cloud resource management shares the same
objectives than the cloud orchestrator over the resource lifecycle. They can be assimilated
to the same entity for the two solutions.

4.5 Performance Evaluation

In order to evaluate the proposed software-defined strategy exploiting unikernels, we designed
and implemented a proof-of-concept prototype. It serves as a basis to quantify the performances
of our approach through extensive series of experiments, and to compare them to traditional VM
solutions. The considered security mechanisms support both the authentication and the access
control for HTTP servers.

4.5.1 Prototype Implementation

We have implemented a proof-of-concept prototype based on an HTTP server over the MirageOS
unikernel. As unikernels do not come with of-the-shelve applications but ought the developers
to redesign them, we could not refer to a standard solution heavily deployed in production
(e.g. Apache webserver in LAMP stack). Instead, we have considered the demonstrative HTTP
server provided by the Mirage project itself [97], that has been complemented to insert the re-
quired security mechanisms. MirageOS is a unikernel solution based on the OCaml programming
language. It features the compilation of VM images for Xen or KVM hypervisors or Unix ex-
ecutables. The OCaml language provides object-oriented programming and integrates a strong
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Figure 4.4: Average supported workload of securized unikernels compared to virtualization solu-
tions

Figure 4.5: Memory consumption of securized unikernels

static and inferred typing model. This confers to the compiler the ability to statically detect
most of typing error as well as some execution stream issues (e.g. incomplete pattern matching).
Software resource are compartmentalized into namespaces called modules, and are loadable at
glance. A garbage collector enables the resource reclamation of unaddressed software component.
Although application, libraries and hardware resources management are directly managed in the
OCaml runtime, the hardware resource bootstrapping is performed by a kernel feature library
provided by third party projects: Xen platform is handled by mini-os project routines [164],
while KVM is addressed by the Solo5 project [147].

The web server implementation is based on the CoHTTP HTTP processing library [33]
provided by the Mirage project. The instantiated server listens for connections on TCP ports 80
(plain) and 443 (TLS). Incoming connections on port 80 are redirected to the second one through
legacy HTTP redirection, while the ones on port 443 are TLS-ciphered with a sample certificate,
and processed normally. The multi-threading permits to dispatch incoming client connections
among several threads. The response edition to one client is consequently independent from the
processing of another client. The configuration of the security mechanism is specified through
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Figure 4.6: Memory cost per HTTP request of securized unikernels

its source code. Actually, there are two main configuration points: (i) a boolean specifying the
mechanism behavior for anonymous or unrecognized credentials, (ii) a data structure for each
enforced resources, enumerating themselves the accepted credential list. The security monitor
we implemented as a module is integrated into the unikernel image. Its main procedure takes as
input the HTTP client request, and returns a boolean according to the access granting defined
in the configuration. To integrate it with the HTTP server, we had to insert one hook in the
client request processing procedure. We have additionally added the support for the 403 HTTP
error code response.

4.5.2 Qualitative and Quantitative Evaluations

From a qualitative viewpoint, this implementation has proven the feasibility to integrate secu-
rity mechanisms in unikernel VMs, with a limited base modification from protected resources.
Their performances together with hardware resource management and self-scalability capability
through fast boot time identify them as considerable newcomers for cloud infrastructures, but
also for VNF (Virtual Network Functions) design. We address their configurability before re-
source instantiation, sealing their configuration options values during their lifespan. In practice,
this security module implements authentication and access control to resources: supplying the
correct credentials corresponding to the accessed resource results in a 200-typed HTTP server re-
sponse including the content of the related resource. Inversely, submitting the wrong credentials
for a requested resource results in a 403-typed HTTP answer. Accessing a resource referenced
in the security policy or not without supplying credentials results in a response specified by a
dedicated configuration option.

We have performed the quantitative evaluation on the following testbed. As host virtualiza-
tion system and image building environment, we have used a Intel i7-5500U CPU at 4x2.40GHz
equipped with 16GB of RAM. It runs Ubuntu 16.04 LTS OS with Linux kernel 4.4.0-93, Oracle
Virtualbox 5.0.40 for regular VM experimentation, Docker 1.12.6 as the container engine and
ukvm 0.2.2 as unikernel monitor [160]. For each virtualization solution, we have allocated 1
vCPU, 512 MBio of RAM, and the latest versions of their software components (i.e. up-to-date
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Figure 4.7: Unikernel image generation delay time

Ubuntu 16.04 LTS for Virtualbox VM and Docker image, and Mirage 3.0.4 for unikernel). Vir-
tualbox VM and Docker containers provides Apache2 webserver with mod_ssl enabled. The
Mirage unikernel implements CoHTTP-based webserver. Although being technically different,
both webserver solutions are fully adapted to the virtualization architecture supporting them and
are evaluated on common features. HTTP workload tests have been performed with WRK [49]
while processes execution times are measured with time utility. HTTP servers are only requested
through TLS-ciphered connections, with WRK or curl.

In a first series of experiments, we wanted to quantify the HTTP server performances with
secured unikernels, and compare them to unikernels and other virtualization solutions. Figure 4.4
illustrates workload concerns by measuring successful HTTPS responses modulated by the num-
ber of concurrent connections: unikernels have been praised for their performances compared to
regular OS. This assertion is confirmed with this workload analysis: although containers provide
a more important workload support than unikernels, those have a substantially lighter memory
footprint (Figure 4.5), dwarfing their memory cost per request (Figure 4.6). This experiment
also states that the insertion of our security mechanisms slightly lowers the workload support (an
average of 6.5% of reduction) with almost no impact on VM memory consumption (an overhead
of 2 MBio with the 200-connections workload scenario, no overhead when idle).

In the second and third series of experiments, we were interested in evaluating the inci-
dence of adding security mechanisms on the delay times required for generating unikernel images
(Figure 4.7) and rebooting unikernel VMs (Figure 4.8). The generation process is analyzed by
parameterizing the number of security mechanisms to be inserted and the allocated threads.
We have focused on unikernel source configuration, compilation and packaging phases, at the
expense of the dependencies installation, as it carries a bias for iterative time measurements
and is not relevant for the recompilation case. The evaluated reboot process is considered ac-
complished when the HTTPS port is listened back. The large sampling of sequential reboots
aims at evaluating the linearity of reboot delays related to the number of requested ones. In
these experiments, we observed that security mechanism insertion induces an average overhead
of 7.87% for image generation and preserves the linearity of unikernel VM reboot delays toward
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Figure 4.8: Unikernel VM reboot delay time

Figure 4.9: HTTP request delay time for an authorized access

the number of performed ones.

In a last series of experiments, we have compared the performances with respect to HTTP
requests delay time over a unikernel with and without the built security mechanisms. The
obtained results are detailed on Figure 4.9, together with the regular VM and container solutions
without security mechanisms. The observed overhead induced by security mechanisms over the
unikernel solution is limited to 0.2 ms on average during experiments. Secured unikernels sustain
a 38% delay decrease over regular VMs. These different results show the benefits that unikernels
bring to our software-defined security strategy.
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4.6 Summary

We have proposed a unikernel generation approach for supporting software-defined security in
cloud infrastructures. We have specified the underlying framework and formalized the on-the-
fly generation of unikernel images that support this solution. We have exploited unikernels
to build highly-constrained configurations limited to the strict necessary with a time-limited
validity. Security mechanisms are directly integrated to the unikernel images at building time.
A proof of concept prototype based on MirageOS was developed and the performance of such a
software-based security strategy was evaluated through extensive series of experiments. We have
also compared them to other regular virtualization solutions. Our results show that the costs
induced by security mechanisms integration are relatively limited, and unikernels are well suited
to minimize risk exposure. This unikernel generation framework constitues the second building
block of our approach. In the next chapter, we will show how to extend a cloud orchestration
language in the context of our work. The objective is to drive the generation of protected
unikernels based on the presented framework and to enable an orchestration relying on different
security levels, with the support of the SDSec architecture.



78 Chapter 4. On-the-Fly Protected Unikernel Generation



Chapter 5

Topology and Orchestration
Specification for SDSec

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 TOSCA-Oriented Software-defined Security Approach . . . . . . . . 85
5.4 Extensions of the TOSCA Language . . . . . . . . . . . . . . . . . . . 86

5.4.1 The TOSCA Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 Describing Unikernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.3 Specifying Security Requirements . . . . . . . . . . . . . . . . . . . . . . 90
5.4.4 An Illustrative Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Underlying Security Framework . . . . . . . . . . . . . . . . . . . . . 92
5.5.1 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.2 Interpreting SecTOSCA Specifications . . . . . . . . . . . . . . . . . . . 93
5.5.3 Building and Orchestrating Unikernel Resources . . . . . . . . . . . . . 94
5.5.4 Adapting to Contextual Changes . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Introduction

In the previous chapters, we have considered the software-defined security (SDSec) as an approach
for supporting the programmability of security mechanisms that are used to protect resources
offered by cloud infrastructures. In Chapter 3, we have analyzed the feasibility of such a secu-
rity programmability layer for addressing multi-cloud and multi-tenant environments, through
different realistic scenarios. The foundation of this layer relies on the SDSec logic to express and
propagate security policies to the considered cloud resources, and on the autonomic paradigm to
dynamically configure and adjust these mechanisms to distributed cloud constraints. We have
also evaluated in Chapter 4 the benefits of using unikernel virtualization techniques to build
and maintain specific cloud resources embedding security mechanisms. These lightweight virtual
machines are built using a minimal set of libraries, enabling the reduction of the attack surface.
We have defined an architecture for generating protected unikernels. However, it requires to be
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orchestrated to integrate our SDSec architecture and contribute efficiently to the protection of
cloud resources.

In this chapter, we propose to an extend the TOSCA3 orchestration language for support-
ing our SDSec approach based on unikernels. The objective is to exploit this language, which
supports the specification of cloud topologies and their orchestrations, in order to drive the
integration and configuration of security mechanisms within cloud resources. This contributes
to leverage a security-by-design cloud, from the specification of multiple levels of security re-
quirements to the generation (and regeneration) of specific unikernel-based virtual machines to
address them. The goal is be able to describe unikernel components and specify multi-level secu-
rity requirements, in line with a security orchestrator and our unikernel generation framework.
The protected unikernels corresponding to the different orchestrated security levels can be gen-
erated in a proactive manner, and are compatible with the elasticity and on-demand properties
of cloud resources. Our main contributions in this chapter are (i) proposing and formalizing a
software-defined security approach based on TOSCA for protecting cloud services, (ii) extend-
ing the TOSCA language to support our unikernel and multi-level security requirements, (iii)
designing a framework capable of interpreting this extended language to generate and configure
protected unikernels, and (iv) evaluating different SDSec strategies based on a proof-of-concept
prototyping.

The remainder of this chapter is organized as follows. Section 5.2 presents existing work
in the areas related to cloud security. Section 5.3 gives an overview of our TOSCA-oriented
software-defined security approach. The extensions of the TOSCA language are described in
Section 5.4, while Section 5.5 describes the underlying framework exploiting them to enable
security-by-design clouds. Section 5.6 concludes the chapter and points out additional research
perspectives.

5.2 Related Work

Our work on distributed cloud security concerns the enforcement of security requirements that
impact both the orchestration and the building of cloud resources.

Important efforts have been spent to support security programmability and orchestration
in cloud environments. The programmability of resources has been developed in the area of
software-defined networking, with multiple applications dedicated to security management. For
instance, [84] proposes and evaluates delegation strategies for enforcing security mechanisms
at the level of SDN switches, and [110] defines several dynamic access control methods tak-
ing into account the current threat levels with respect to devices in SDN environments. This
programmability contributes to a more flexible composition of security functions. A typical
example can be given with the FRESCO framework [142] which supports modular security func-
tions that can be composed into security chains to protect resources. [119] also considers a
complete life cycle management of virtual network functions, driven by security constraints.
Security programmability should not be limited to network-based mechanisms, but should of
course also consider system-based and software-based enforcements in cloud environments. Au-
thors of [52] envision an architecture for protecting virtualized resources with multiple security
functions and propose several protection use-cases. Existing work in policy-based management
have contributed to extend security languages for cloud infrastructures. For instance, [135] pro-
poses policy specifications for supporting cloud security, while considering a medium-agnostic
enforcement including network-based and system-based counter-measures. Another important

3Topology and Orchestration Specifications for Cloud Applications
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aspect concerns the minimization of virtual machines to the strict necessary components and
libraries, in order to both increase their performance and restrict the attack surface. We argue
in favor of exploiting unikernels to minimize the attack surface and have showed in the previous
chapter how such unikernel-based virtual machines can be generated in an on-the-fly manner. It
is essential to take into account the generation of such protected virtual machines into orchestra-
tion languages, in order to support cloud security, right from the design phase. Such extensions
therefore require to describe the software components that compose unikernel virtual machines.
A large variety of description languages has already been proposed in the literature, coming from
software engineering, but also from service design. Historically, software programming has con-
tributed to several description standards [78] to address internal software interactions amongst
routines. Extensions have also been specified to integrate security requirements, such as [85].
These descriptions are often too fine-grained and do not address exploitation considerations.
The aspect-oriented programming has inspired work in [9] to specify and enforce access control
policies in pervasive environment. However, the considered security functions remain closely tied
to the access control. In the meantime, service design efforts provide another description scale.
For instance, [93] provides service descriptions, by considering packages and their dependencies
on Linux operating systems. The cloud orchestration languages, such as TOSCA, should take
into account such descriptions. While they support the specification of the topology and orches-
tration of distributed cloud services, they only rely on off-the-shelves software descriptions [20].
This integration is an important lack to support security requirements from the design to the
orchestration of services.

5.3 TOSCA-Oriented Software-defined Security Approach

We propose a software-defined security approach based on the TOSCA language [118], in order
to protect cloud infrastructures using unikernels. This topology and orchestration language
provides a support to describe distributed cloud services. It is extended to specify security
requirements, according to different orchestrated levels. The extended language serves as an
input to our security framework, which drives the generation and configuration of protected
cloud resources, as depicted on Figure 5.1. These resources rely on unikernels, corresponding to
lightweight virtual machine, and are characterized by a low attack surface. They only contain
the strict necessary software components and libraries, and embed security mechanisms. The
integration of security mechanisms at the design phase goes in favor of further security-by-design
for distributed orchestrated cloud environments. The generation of unikernel virtual machines is
performed in an on-the-fly manner, in order to cope with contextual changes related to threats
and risks. Our SDSec approach relies on several challenging requirements that are detailed below.

A first major requirement concerns the adequacy to distributed cloud. Our goal is to protect
services that are typically distributed over different clouds and involve multiple tenants. The
services are specified as logical combinations (also called topologies) of cloud resources. The
language also details their relationships, and the processes that manage them. In that context, we
exploit the TOSCA language for security purposes. We consider a dedicated extension to specify
the security policy of the described service. This abstraction is in phase with the programmability
of security mechanisms over cloud infrastructures. These mechanisms are typically spread over
tenants and infrastructures. This extension contributes to a more consistent specification of
distributed and heterogeneous configurations. Moreover, we consider the whole life cycle of the
cloud service in this security policy, going from the design of protected cloud resources to their
orchestration. This includes the integration of security mechanisms at the building of resources,



82 Chapter 5. Topology and Orchestration Specification for SDSec

Figure 5.1: From the specification of TOSCA-based security requirements to the generation and
operation of secured unikernel virtual machines

in accordance with a security-by-design approach. The security policy is taken into account by
our security framework, which includes a cloud resource orchestrator and a security orchestrator.

A second important requirement concerns the security enforcement based on unikernel vir-
tualization. The minimization of virtual resources permits a better control of the attack surface,
through the usage of the strict necessary code base. The security enforcement relies on the
TOSCA language to drive the generation of secured unikernel virtual machines. These machines
embed the required security mechanisms, which depend on the technical constraints imposed by
the cloud environments and its tenants. In order to enable such a fine-grained enforcement, we
consider an extension of the TOSCA language to describe unikernel resources, in addition to the
security requirements already mentioned previously. This permits to exploit the expressiveness of
the language to describe the unikernel resources to be protected with their relationships amongst
other resources while keeping a human-readable format. The nature of security requirements de-
pends on the considered security function (e.g. access control vs. intrusion detection/prevention),
and their scope can be specified at different levels of granularity, from a single unikernel to a
whole distributed cloud service. The enforcement of the security policy may of course rely on
different security functions, which may be realized by multiple security mechanisms depending
on the environment constraints. Following a software-defined paradigm, the resources and their
security mechanisms are decoupled from the security management.

A third requirement is about the adaptation to security-related contextual changes. The
security policy should be continuously enforced along the protected service life cycle, including
after a change in the security context of service resources. These changes include the ones related
to the security policy and their propagation to protected resources, but also the others related
to resource exploitation that may be triggered by cloud orchestration (e.g. scalability, elasticity,
resource reconfigurations) or be due to external parties (e.g. resource customer). In the case
of unikernel resources, this adaptation may imply a complete resource rebuilding. The TOSCA
language enables through its orchestration facilities to anticipate the changes that may occur,
including changes that may concern the service topology. In particular, several unikernel virtual
machines corresponding to different security level requirements may be generated in a proactive
manner.

Based on these requirements, we introduce extensions for the TOSCA language to specify
the security requirements in our context, and propose a framework to enforce these requirements
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Figure 5.2: Extensions of the TOSCA language for describing unikernels (UniTOSCA) and
specifying security requirements (SecTOSCA)

based on the generation of secured unikernel virtual machines.

5.4 Extensions of the TOSCA Language

In order to support our software-defined security solution, we have first extended the TOSCA or-
chestration language, which provides a baseline for describing distributed and orchestrated cloud
services. These extensions are depicted on Figure 5.2. The first extension, called UniTOSCA,
permits to refine the description level of TOSCA in the context of services implemented based
on unikernels. It introduces a specific type for unikernels, and permits to describe them as a
composition of software components. This description is then exploited to generate unikernels
required by a cloud service. The second extension, called SecTOSCA, permits to specify security
constraints in the TOSCA language. As previously mentioned, the scope of these constraints
goes from a single unikernel to a whole cloud service. They are used to enforce security over
resources using dedicated mechanisms (firewalls, intrusion detection systems, access control).
This enforcement is performed in a dynamic manner to adapt to contextual changes and takes
benefits from the orchestration facilities offered by TOSCA. In particular, it is possible to specify
different security levels to cope with various contexts. After presenting the key concepts of the
TOSCA language, we will detail successively the two UniTOSCA and SecTOSCA specifications,
with illustrative examples.

5.4.1 The TOSCA Language

The TOSCA language stands for Topology and Orchestration Specification for Cloud Appli-
cations. It is a standardized specification for describing the deployment and orchestration of
cloud services. It serves as an input for cloud orchestrators to determine the resources to be
instantiated and the operations to configure and operate them, in order to provide a given ser-
vice. As depicted on the left part of Figure 5.2, a cloud service is described by the TOSCA
language as a topology of resources (also called nodes) that are interconnected amongst them
through links (also called relationships). It is then possible to specify orchestration procedures
over this topology, such as starting, shutting down a node or changing a relationship. Each
element (node or relationship) takes benefits from inheritance and template mechanisms offered
by the language. Following an object-oriented paradigm, each type defines a class of elements
sharing a common set of properties and interfaces, while a template defines a type with a set
of pre-defined values affected to properties. An instance can be obtained from a template and
corresponds to an implementation of the resources in a given contextual environment. The lan-
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1 topology_template:
2 relationship_templates:
3 load_balancing:
4 type: tosca.relationships.RoutesTo
5 interfaces:
6 Standard:
7 configure: lb_configure.sh
8
9 node_templates:
10 my_server:
11 type: tosca.nodes.Compute
12 capabilities:
13 host:
14 properties:
15 num_cpus: 2
16 mem_size: 2048 MB
17 disk_size: 10 GB
18
19 web_server:
20 type: tosca.nodes.WebServer
21 capabilities:
22 data_endpoint:
23 properties:
24 port_name: 8080
25 requirements:
26 - host: my_server
27
28 front_portal:
29 type: tosca.nodes.loadbalancer
30 properties:
31 algorithm: fifo
32 requirement:
33 - application:
34 node: web_server
35 relationship: load_balancing
36 interfaces:
37 Standard:
38 configure: lb_configure.sh

Figure 5.3: Example of a simple TOSCA specification

guage also permits to specify relationships in a implicit manner, using requirements (specifying
what the node expects from other nodes on hosting infrastructures) and capabilities (specifying
what the node may provide to other nodes on the infrastructures). Figure 5.3 is an example
of a TOSCA specification inspired from [136]. In its current form, the TOSCA specification is
non normative with respect to the orchestration policy. Interfaces are typically used to define
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the operations performed on the nodes, following traditional workflow and process formalisms.
In order to clarify the terminology introduced by TOSCA and provide the materiel to formaly
define our processing on TOSCA specification, we can define a node type Tnode, as given by
Equation 5.1, where prop corresponds to the properties of the node, itf indicates its interfaces,
req and cap stand for its requirements and capabilities.

Tnode = 〈prop, itf, req, cap〉 (5.1)

It is then possible to specialize a given node type Tnode into a node template T ′node, as given by
Equation 5.2, where prop′, cap′ and req′ permits to refine the node type. The interfaces are not
concerned by this specification and are kept unchanged.

T ′node : Tnode 7−→ 〈prop′, itf, req′, cap′〉 (5.2)

A node instance Inode is then generated from a node template T ′node, as given by Equation 5.3.
A template can be seen as a subclass, while an instance corresponds to an object. This latter is
a resource deployed and running on an hosting infrastructure given a provided execution context
e.

Inode : 〈T ′node, e〉 7−→ 〈prop′(e), itf, req′(e), cap′(e)〉 (5.3)

We consider the same formalism to represent the explicit relationships supported by the TOSCA
language. Therefore, a relationship type, noted Trelationship, can be specialized into a relation-
ship template, noted T ′relationship. This one can be deployed as a relationship instance, noted
Irelationship. The TOSCA language offers several benefits with respect to our approach. In par-
ticular, it provides a support to describe distributed cloud services as topologies interpretable
by cloud orchestrators, the interfaces allowing to specify orchestration operations to operate
them. In addition, the notion of types, templates and instances is in phase with the abstraction
level required by our software-defined strategy, enabling the decoupling between the control and
implementation planes. Finally, it is easily extensible to cover our specific requirements with
respect to unikernels.

5.4.2 Describing Unikernels

We extend the TOSCA language in order to describe unikernel virtual machines. This extension
is represented in the middle of the Figure 5.2. The purpose is both to increase the granularity
of the language, and to drive the building of unikernels before their instantiation. For that, we
introduce an additional element, called unikernel component m, in order to describe routines and
compose them to elaborate unikernels. The relationships amongst these components correspond
to the dependencies that may exist amongst routines. These components are characterized by
attributes and values that are configurable. However, taken separately, each of them cannot lead
individually to a resource instance. A minimal set of routines is required to be composed in
order to generate such an instance. In phase with our approach exposed in chapter 4, we take
benefit from the simplified system architecture of unikernels to compose and build resources.
This description of unikernel resources enables the orchestrator to take in charge the building
and parameterization of these resources. The knowledge on unikernel components provided by
the UniTOSCA extension facilitates the adaptation to contextual constraints by the orchestrator,
while keeping a relatively simplified modeling of unikernel resources. The consistency of images
generated from the descriptions relies on the dependency relationships amongst components,
the satisfaction of these dependencies is checked before generating unikernel images that are
used to elaborate the services. We consider a description of unikernel resources in phase with
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Resources Node template Unikernel component
Scope Instantiable resource Routines composing an instan-

tiable resource
Implementation Virtual machine images or appli-

cations
Source code of the routine

Interface Used to operate a resource Used to build a resource
Configuration Partial at runtime Fixed at runtime, required re-

building
Relationships Distribution amongst hosting in-

frastructures
Dependencies amongst unikernel
components

Table 5.1: Comparison of node templates (TOSCA) and unikernel components (UniTOSCA)

the description of the other TOSCA resources. An example of such a specification is given
in Figure 5.4, where we detail a unikernel resource, called my_unikernel, composed of three
unikernel components. These components detail each routine on which the resource is built,
considering a finer granularity than regular TOSCA resources.

We can represent formally a unikernel component, in a similar manner than a node, but
at a different granularity, as given by Equation 5.4, with propm standing for the component
properties, itfm representing its interfaces, reqm indicating its requirements, and capm specifying
its capabilities. The specified components serve as a basis for building TOSCA node type, as
given by Equation 5.5 where 〈m1, ...,mk〉 indicates a consistent subset of unikernel components.
These types are then turned into node templates. The building of unikernel images will be
further detailed in the next section.

m = 〈propm, itfm, reqm, capm〉 (5.4)

imageuni : 〈m1, ...,mk〉 7−→ Tnode (5.5)

The choice of inferring node types (instead of node templates) from a set of unikernel components
is motivated by a pragmatic approach consisting in specializing the unikernel resources through
a template. The unikernel components selected to build the resource permit to infer the main
properties of the corresponding node type. Our approach distinguishes the configuration associ-
ated to the unikernel image specifically built from the parametrization at instanciation time (e.g.
boot arguments). It is interesting to compare the notion of node templates and unikernel com-
ponents, as detailed in Table 5.1. First, they do not address the same granularity. The unikernel
components permit to build node types, and then to infer node templates. The node templates
refer to instantiable resources used during the service deployment and operation phases. These
resources can be composed through orchestration operations. Complementarily, unikernel com-
ponents are only exploited during the service building, in order to elaborate a resource from a
set of routines. In addition, node templates define a predefined sets of properties and interfaces,
while unikernel components inject their own ones to the nodes they are contributing to during
their building. This fine granularity enables us to drive our software-defined security solution
based on unikernels.
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1 unikernel_modules:
2 my_unikernel:
3 cohttp_lwt_server:
4 capabilities:
5 http_processing: tosca.capabilities.Endpoint
6 requirements:
7 - available_nic: unikernel.virtualenv.networking

.nic
8 log:
9 capabilities:
10 console_logging: unikernel.virtualenv.console
11 dispatch:
12 properties:
13 https_port:
14 type: integer
15 http_port:
16 type: integer
17 capabilities:
18 webserver_front: tosca.capabilities.Endpoint
19 requirements:
20 - http_processing: tosca.capabilities.Endpoint
21 - console_logging: unikernel.virtualenv.console
22
23 topology_template:
24
25 relationship_templates:
26 load_balancing:
27 type: tosca.relationships.RoutesTo
28 interfaces:
29 Standard:
30 configure: lb_configure.sh
31
32 node_templates:
33 my_unikernel_vm:
34 type: my_unikernel_type
35 properties:
36 name: vm1
37
38 front_portal:
39 type: tosca.nodes.loadbalancer
40 properties:
41 algorithm: fifo
42 interfaces:
43 Standard:
44 configure: lb_configure.sh

Figure 5.4: Example of a UniTOSCA specification exploited to describe a unikernel resource as
a set of routines



88 Chapter 5. Topology and Orchestration Specification for SDSec

5.4.3 Specifying Security Requirements

Based on this language leveraged by unikernel components, we propose to specify the security
requirements related to the considered cloud services. We therefore introduce an extension of
the TOSCA language, called SecTOSCA, which is represented on the right part of Figure 5.2.
This extension serves as a support to define the security policy related to our SDSec approach.
It contributes to the decoupling of the security management logic from the security enforcers and
the resources to be protected, in line with a policy-based management strategy. In that context,
we consider a security orchestrator, complementary to the cloud resource orchestrator, taking in
charge the security policy and the configuration of security functions. We consider a security
function (access control, intrusion detection, encryption mechanisms) to be a feature aiming at
enforcing a set of security requirements (access control lists, firewall rules) on the cloud resources.
The security requirements can be specified at different scales, from a single unikernel to a whole
cloud service. The TOSCA language already includes a non-normative policy specification. Some
efforts have already shown the benefits of exploiting this policy in a specific use case, in order
to specify access control rules on resources in [118]. We argue in favor of exploiting TOSCA to
specify a security policy capable of covering the deployment and operation phases, but also the
building of unikernel resources. The goal is to enable a security enforcement at an early stage
through the generation of specific unikernel components and resources.

In addition, we take benefits from the orchestration facilities of the TOSCA language in
order to specify several security levels, with respect to a given context. Our SecTOSCA extension
enables an adaptation to contextual changes in two different manners. First, security mechanisms
expose interfaces, enabling the security orchestrator to adjust their configuration parameters.
This parameterization is performed on the instance of a node Inode, where the security level can
be dynamically changed by the security orchestrator, as given by Equation 5.6.

configuresec : 〈Inode, levelsec〉 7−→ Inode (5.6)

Second, the resources themselves can be rebuilt at runtime to cope with security constraints.
In particular, this concerns unikernel resources embedding security mechanisms, which can be
dynamically re-generated to cope with security constraints. To that purpose, we extend the
imageuni (defined in Equation 5.5) method into buildingsec by introducing an additional pa-
rameter, so that the security level can be specified, as given by Equation 5.7. In that case, the
result is not an instance, but a node type Tnode, which is then specialized and instantiated as an
instance Inode.

buildingsec : 〈〈m1, ...,mk〉, levelsec〉 7−→ Tnode (5.7)

The SecTOSCA specification details the different security levels that can be required for the
cloud service. The generation of unikernel virtual machines with different security levels can be
performed in a proactive manner. The security orchestrator can therefore efficiently order to
the resource orchestrator the deployment of a new instance of a given unikernel, from a pool of
already generated unikernels.

5.4.4 An Illustrative Case

In order to illustrate our approach, we give an example of a SecTOSCA specification in Fig-
ure 5.5. We consider the case of a service exposing static resources over an HTTP server. These
resources correspond to dedicated unikernel virtual machines, while a load balancer is in charge
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1 unikernel_modules:
2 my_unikernel:
3 cohttp_lwt_server:
4 capabilities:
5 http_processing: tosca.capabilities.Endpoint
6 requirements:
7 - available_nic: unikernel.virtualenv.networking.nic
8 log:
9 capabilities:
10 console_logging: unikernel.virtualenv.console
11 dispatch:
12 properties:
13 https_port:
14 type: integer
15 http_port:
16 type: integer
17 capabilities:
18 webserver_front: tosca.capabilities.Endpoint
19 requirements:
20 - http_processing: tosca.capabilities.Endpoint
21 - console_logging: unikernel.virtualenv.console
22
23 topology_template:
24 node_templates:
25 my_unikernel_vm:
26 type: my_unikernel_type
27 properties:
28 name: vm1
29 vm_security_level:
30 multi_level_security:
31 default_security_level: medium
32 critical_security_level: high
33 nvi_pop: openstack_infra1
34 tenant_domain: tenant1
35 members: {{user1 ,high},{user2 ,medium}, ... , {user5 , low}}
36
37 front_portal:
38 type: tosca.type.loadbalancer
39 properties:
40 lb_ddos_mitigation_level:
41 multi_level_security:
42 default_security_level: regular_mitigation
43 critical_security_level: paranoid_mitigation
44 nvi_pop: openstack_infra1
45 tenant_domain: tenant1
46 interfaces:
47 Standard:
48 configure: lb_configure.sh
49
50 security_group:
51 VM_SP1
52 type: groups.unikernel
53 description: defining security group for tenant1
54 target: {vm1}

Figure 5.5: Example of a SecTOSCA specification
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of balancing incoming connections to each unikernel instance. The load balancer has a built-
in DDoS4 mitigation mechanism, which can be activated on demand. The unikernel virtual
machines are based on three unikernel components: cohttp_lwt_server, log and dispatch.
To secure the service, we want to (i) control the DDoS mitigation mechanism offered by the
load balancer and (ii) enforce an access control on unikernel virtual machines. In Figure 5.5,
we can observe a unikernel_modules section which describes the composition of the uniker-
nel image my_unikernel with no reference to security mechanisms. The topology_template
section enumerates both the load balancer (front_portal) and the unikernel virtual machine
(my_unikernel_vm). The security requirements are specified in two manners:

1. The configuration of the DDoS mitigation mechanism provided by the load balancer is
characterized by the lb_ddos_security_level property part of the front_portal node.
The security levels may depend on different contextual parameters, such as the presence of
specific threats for local monitoring results. In this example, two different security levels
are specified and correspond to regular and paranoid mitigations (regular_mitigation
and paranoid_mitigation values).

2. The access control on unikernel virtual machines is specified by additional properties
corresponding to vm_security_level,nvi_pop,tenant_domain and members. The speci-
fication of access control requirements follows the same formalism as [119]. Again, the
vm_security_level property enables multi security levels so that the access control can
be changed with respect to current threats. The last section security_group enumerates
the information specifically related to the access control.

In the following of this chapter, a SecTOSCA specification will serve as a basis to define our
security policy. We will then successively infer from it an enriched UniTOSCA specification, and
a TOSCA specification. When we refer to Figure 5.2 presenting the different extensions, it looks
like we are taking the reverse path to obtain a TOSCA specification. The purpose is to guarantee
the compatibility of our solution with TOSCA-native architectures. The enriched UniTOSCA
specification will include the security mechanisms to be embedded into the unikernel resources,
while the TOSCA specification will refer to pre-compiled protected unikernel images.

The corresponding UniTOSCA specification is illustrated by Figure 5.6. It diverges from its
SecTOSCA counterpart mainly by the removal of all security-related information. In accordance
with the formalism from [119], security_group section, tenant_domain, members and nvi_pop
properties are removed. The node properties subjected to security levels are also affected with
the values of the default_security_level. As a counterpart, this specification integrate the
inclusion of the accesscontrolmodule security mechanism, in charge of enforcing a security
policy.

Finally, the TOSCA specification is generated from the UniTOSCA by compiling require-
ments, capabilities and properties information from the software components in the
unikernel_modules section to node template. The properties are also affected with default val-
ues while implementation artifacts are specified. Figure 5.7 draws an example of the produced
TOSCA specification.

5.5 Underlying Security Framework

In this section, we detail how the proposed extended specification supports the design and man-
agement of protected cloud services. For that purpose, we introduce a security framework in

4Distributed Denial-of-Service
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1 unikernel_modules:
2 my_unikernel:
3 cohttp_lwt_server:
4 capabilities:
5 http_processing: tosca.capabilities.Endpoint
6 requirements:
7 - available_nic: unikernel.virtualenv.networking.nic
8 log:
9 capabilities:
10 console_logging: unikernel.virtualenv.console
11 dispatch:
12 properties:
13 https_port:
14 type: integer
15 http_port:
16 type: integer
17 capabilities:
18 webserver_front: tosca.capabilities.Endpoint
19 requirements:
20 - http_processing: tosca.capabilities.Endpoint
21 - console_logging: unikernel.virtualenv.console
22 accesscontrolmodule :
23 attributes:
24 - security_monitor_url: "http ://192.168.0.42"
25 - security_domaine: "tenant_1"
26 capabilities:
27 access_control_security: security.accesscontrol.http
28 requirement:
29 webserver_front: tosca.capabilities.Endpoint
30
31 topology_template:
32 node_templates:
33 my_unikernel_vm:
34 type: my_unikernel_type
35 properties:
36 name: vm1
37
38 front_portal:
39 type: tosca.type.loadbalancer
40 properties:
41 algorithm: fifo
42 interfaces:
43 Standard:
44 configure: lb_configure.sh

Figure 5.6: Example of a UniTOSCA specification generated from a SecTOSCA specification
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1 node_types:
2 my_unikernel_type:
3 properties:
4 https_port:
5 type: integer
6 http_port:
7 type: integer
8 capabilities:
9 access_control_security: security.accesscontrol.http
10 requirements:
11 - available_nic : unikernel.virtualenv.networking.nic
12 - console_logging: unikernel.virtualenv.console
13
14 topology_template:
15 node_templates:
16 my_unikernel_vm:
17 type: my_unikernel_type
18 properties:
19 name: vm1
20
21 front_portal:
22 type: tosca.type.loadbalancer
23 properties:
24 algorithm: fifo
25 interfaces:
26 Standard:
27 configure: lb_configure.sh

Figure 5.7: Example of a TOSCA specification issued from a SecTOSCA specification
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Figure 5.8: Overview of the TOSCA-oriented SDSec framework for protecting cloud services

line with the concepts of SDSec, and analyze the different steps related to the operation of this
solution based on unikernels. Coupling the design of protected resources with their management
is a challenging issue, whose complexity is increased by the distribution and heterogeneity of
resources.

In order to address it, we organize the security framework according to three different tasks.
The considered framework is depicted in Figure 5.8. First, it takes in charge the building of
protected resources implementing the cloud service, as represented by yellow blocks on the Fig-
ure. These resources have to be compatible with security programmability. Considering such
a resource-centric strategy enables a fine-grained security enforcement. The UniTOSCA spec-
ification supports the design of protected unikernel images, embedding SDSec-capable security
mechanisms. Second, it permits the management of security mechanisms with respect to secu-
rity requirements specified by the SecTOSCA specification. Decoupling this management from
protected resources, as represented by the two planes (security management plane and security
resource plane) facilitates the support of distributed and heterogeneous environments. This task
corresponds to the red blocks in the Figure. Third, the framework supports the adaptation to
contextual changes. The purpose is to maintain security enforcement when changes occur over
resources and their environments. The TOSCA-based orchestration, represented by blue blocks
on the Figure, addresses the whole life cycle of resources and can notify any changes that may
occur on resources.

5.5.1 Main Components

The proposed framework includes several components depicted in Figure 5.8. In addition to the
three tasks previously mentioned, we can observe two different axes: one horizontal axis referring
to security programmability and distinguishing the security management plane from the security
resource plane, and another vertical axis distinguishing the design/building of protected resources
from their deployment and operation. It takes as input a SecTOSCA specification, serving as
starting point to build and orchestrate protected resources embedding security mechanisms. We
detail below the role of the main components:

• SecTOSCA interpreter. The role of this interpreter is to analyze a SecTOSCA spec-
ification and provide security requirements to the security orchestrator. It also produces



94 Chapter 5. Topology and Orchestration Specification for SDSec

a UniTOSCA specification detailing the unikernel resources to be generated with the em-
bedded security mechanisms supporting security enforcement.

• Security orchestrator. This component is responsible for translating security require-
ments into a consistent orchestration of security mechanisms that are distributed over
resources to be protected. It interacts with policy decision points (PDP) capable of taking
into account specific tenant and host requirements. As an example related to access control,
the security orchestrator is fed with groups of entities allowed to access each others. The
security orchestrator constitutes access control list aligned with those groups. These PDPs
are then in charge of parameterizing Policy Enforcement Points (PEP) corresponding to
the security mechanisms embedded on protected resources.

• UniTOSCA interpreter. This interpreter analyzes a UniTOSCA specification and is
capable to infer a TOSCA-native specification. It drives the generator of unikernels which
builds protected unikernel resources from the description of unikernel components. The
TOSCA specification refers to the unikernel images that are produced by the unikernel
generator.

• Generator of unikernel images. This component is in charge of building unikernel
images based on the description of unikernel components in Chapter 4. This description
includes the components required to build the service, but also the ones required to protect
it (e.g. embedded security mechanisms). It may also be invoked by the cloud orchestrator
to address changes that may occur during the operation phase.

• Cloud orchestrator. It controls the life cycle of cloud resources in accordance with
the TOSCA specification. These resources include more particularly protected unikernel
instances that are deployed and managed in the infrastructure. The proposed architecture
is compatible with any TOSCA-compatible cloud orchestrator.

As previously mentioned, we start from a SecTOSCA specification, which is successively trans-
lated into a UniTOSCA specification, serving to build protected resources, and then a TOSCA
specification serving their orchestration.

5.5.2 Interpreting SecTOSCA Specifications

We detail the operation of the SecTOSCA interpreter, responsible for extracting the security
requirements from the SecTOSCA specification and enriching the TOSCA topology in order
to integrate the security mechanisms enforcing these requirements. We can distinguish two
major tasks: (i) the enrichment of the TOSCA topology to support the enforcement of security
functions, that can be seen as a policy refinement step enabling the integration of security
mechanisms to the topology; and (ii) the provisioning of the security orchestrator with security
rules to parametrize these mechanisms during their operation. We can remark that our solution
supports also the enforcement of security rules directly on the resources. Further discussions
with that respect will be given in the next section dedicated to performance evaluation.

Based on the extensions of the TOSCA language introduced in Section 5.4, the SecTOSCA
interpreter is in charge of determining whether security functions can be enforced on a given
topology representing a cloud service. For that purpose, it relies on the properties, capabilities
and requirements of resources composing this topology. This includes both the TOSCA nodes
and their TOSCA relationships. In a more formalized manner, it interprets a SecTOSCA speci-
fication, noted DsecTOSCA, and generates a UniTOSCA specification, noted DuniTOSCA as well



5.5. Underlying Security Framework 95

as a policy PSO for the security orchestrator, as given by Equation 5.8.

translate : DsecTOSCA 7−→ 〈DuniTOSCA, PSO〉 (5.8)

As access control example, PSO can represent the groups of entities allowed to access each others.
This refinement is only possible if the set of security functions, noted S(DsecTOSCA), described
in the secTOSCA specification is enforceable on the secTOSCA topology, noted L(DsecTOSCA),
for a given execution environment e. This supposes that these security functions are supported
by the different types of resources of the topology, as described by Equation 5.9.

∀sf ∈ S(DsecTOSCA),

isEnforceable(sf, L(DsecTOSCA), e) ≡
∀T ∈ L(DsecTOSCA), isSupported(sf, T, e)

(5.9)

The type T can stand for both a node type Tnode or a relationship type Trelationship. The fact
that a given type supports a given security function does not necessarily mean that the type
requires to integrate specific security mechanisms. The resulting DuniTOSCA is used to drive the
generation of unikernels.

5.5.3 Building and Orchestrating Unikernel Resources

We describe now the role of the uniTOSCA interpreter, in charge of driving the generator of
protected unikernel images and of providing a TOSCA-native specification to the cloud or-
chestrator. The uniTOSCA specification describes the different modules required to build the
unikernel images. This also includes modules implementing security mechanisms. The uni-
TOSCA interpreter therefore takes a uniTOSCA specification, noted DuniTOSCA, and produces
a TOSCA-native specification, noted DTOSCA, together with the generation policy, noted PUG

for building protected unikernel images, as given by Equation 5.10.

translate : DuniTOSCA 7−→ 〈DTOSCA, PUG〉 (5.10)

The generation of a unikernel image relies on a set of k modules m1,m2...mk, as previously given
in Equation 5.5. This image permits to define a TOSCA type Tnode, which is referred by the
TOSCA-native specification DTOSCA. The composition of modules (or unikernel components)
to build a TOSCA type is only possible if these modules are consistent amongst them and with
the execution environment. This means that all the requirements of modules, including security
mechanisms, are satisfied by the capabilities provided by other modules or by the execution envi-
ronment. In a more formalized manner, we consider the ⊕ operator representing the composition
of modules and the � operator indicating that the requirements of a module are satisfied by the
capabilities of another module. Let consider two modules m1 = 〈propm1 , itfm1 , reqm1 , capm1〉
and m2 = 〈propm2 , itfm2 , reqm2 , capm2〉, we can therefore define the ⊕ and � operators respec-
tively by Equations 5.11 and 5.12.

m1 ⊕m2 = 〈propm1 ∪ propm2 , itfm1 ∪ itfm2 ,

reqm1 ∪ reqm2 , capm1 ∪ capm2〉
(5.11)

m1 �m2 ≡ reqm1 ⊆ capm2 (5.12)



96 Chapter 5. Topology and Orchestration Specification for SDSec

Figure 5.9: Interaction diagram related to a security level change

Let capenv be a set of capabilities provided by the execution environment. The set of modules
m1...mk are considered as capenv-consistent when all required capabilities are satisfied by other
components or by this environment, as given by Equation 5.13.

isConsistentcapenv(m1...mk) ≡

(
k⊕

i=1

mi)� (
k⊕

i=1

mi)⊕ 〈�, capenv,�,�〉
(5.13)

This capenv-consistency means that the set of modules can be composed and substituted by a
TOSCA node type, noted Tnode whose capability requirements correspond to at most the capenv
capabilities, as given by Equation 5.14.

Tnode =〈propm1⊕....⊕mn , itfm1⊕....⊕mn ,

reqm1⊕....⊕mn \ capm1⊕....⊕mn ,

capm1⊕....⊕mn \ reqm1⊕....⊕mn〉
(5.14)

This resulting type corresponds to the building of the unikernel images integrating security
mechanisms, as previously introduced with the imageuni operation. These node types, referred
by the TOSCA specification, can then be deployed and orchestrated by the cloud orchestrator.

5.5.4 Adapting to Contextual Changes

Another important aspect concerns the adaptation to contextual changes. The cloud service is
subject to changes, such as the allocation/deallocation of resources or their reconfiguration during
the operation phase. Security threats and their potentiality may also dynamically evolve over
time. From its policy PSO, the security orchestrator is responsible for maintaining a security
level, modifying a security level when necessary, and determining changes to be operated on
security mechanisms. It is the only component of the architecture having a view on both the
service topology and its security configuration through the policy decision points.

In order to maintain or change the security level of the topology implementing a cloud service,
the security orchestrator may proceed in two different ways:
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• It may adjust the security rules exposed to the policy decision points (PDP), in order
to modify the security configuration of resources. This corresponds to the configuresec
operation previously defined. The scope of this option is relatively limited in a unikernel
context, where we try to minimize the configurability of resources.

• It may regenerate the unikernel-based resources in most cases. This corresponds to scenar-
ios where most of rules may be statically implemented over the resources, integrating an
internal PDP. This regeneration enables to modify the parametrization of the resources, but
also to insert or remove security mechanisms from unikernel resources. This corresponds
to the buildingsec operation previously defined.

The regeneration of unikernel images is triggered by the security orchestrator through the cloud
orchestrator, as depicted on Figure 5.9. Unikernel images corresponding to different security
levels may be generated in a proactive manner. Further information regarding the generation of
unikernels can be found in Chapter 4, where we detail a generator framework.

5.6 Summary

We have proposed in this chapter a software-defined security approach based on the TOSCA
language, in order to support the protection of cloud resources using unikernel techniques. The
TOSCA language enables the specification of cloud services and their orchestration. It is ex-
tended to drive the integration and configuration of security mechanisms within cloud resources,
at the design and operation phases. We rely on unikernel techniques to elaborate cloud re-
sources using a minimal set of libraries and to reduce the attack surface. In that context, we
have introduced two extensions of the TOSCA language. The first extension, called UniTOSCA,
permits to refine the description level to specify the building of unikernel-based resources. The
second extension, called SecTOSCA, permits to define multi-level security requirements. We
have illustrated the conversion process of SecTOSCA into UniTOSCA and later TOSCA in Sec-
tion 5.4.4. We have then designed a framework capable of interpreting this extended language
and of generating and configuring protected unikernel virtual machines. In particular, we have
described the different components and modeled their interactions with respect to the building
of cloud resources embedding security mechanisms and their adaptation to contextual changes.
This adaptation can be performed through the reconfiguration of security mechanisms, but also
through the regeneration of protected unikernel virtual machines. Unikernel images correspond-
ing to the different security levels can be proactively generated by the security framework. In the
next chapter, we will present prototyping work related to our approach, as well as experimental
results for quantifying its benefits and limits.
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Chapter 6

Prototyping and Evaluation
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6.1 Introduction

In the previous chapters, we have presented different contributions (architecture, unikernel gen-
eration, policy specification) related to our approach. This chapter describes prototyping and
evaluation work regarding the components of the software-defined security framework. The Mi-
rageOS platform provides the unikernel resources to be protected. The security functions to be
enforced are focused on access control, by designing authentication and authorization security
mechanisms. A generator of protected unikernels is in charge of designing and inserting security
mechanisms inside the resources requiring protection. The security orchestrator is provided by
the Moon project [106], and is in charge of managing security mechanisms, in accordance with
the policy.

The designed framework is in phase with a distributed cloud environment. It supports the
generation of the virtualized resources over multiple infrastructures. The multi-tenancy is directly
endorsed by the Moon security orchestrator. The implementation prototypes serve as building
blocks to our experimentations, in order to evaluate the benefits and limits of our approach.
Experiments are performed with a testbed environment featuring both single-node and multiple-
node configurations.
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Figure 6.1: Implementation prototypes and their environment at a glance

The remaining of this chapter is organized as follows: Section 6.2 describes the technical
implementations of prototypes, including a unikernel generator and security mechanisms, in link
with the Moon framework. Experimental results are then detailed and discussed in Section 6.3.
Section 6.4 gives a summary of this work.

6.2 Implementation Prototypes

The implementation work consists in the elaboration of prototypes (unikernel generator and secu-
rity mechanisms) and the integration with a security orchestrator. The Young unikernel generator
has been elaborated to generate and allocate constrained unikernel images. The Moon framework
provides a support for policy-based security orchestration on allocated unikernel images. Two
different security mechanisms for protecting unikernels have been developed and integrated with
the Moon framework. Figure 6.1 describes how these prototyped components are interacting to
ensure the protection of cloud resources in one tenant, over multiple infrastructures.
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6.2.1 Young Unikernel Generator

The YOung UNikernel Generator (Young) drives the production of protected unikernel images in
a distributed environment. It receives specifications describing images to be produced, retrieves
the necessary technical informations to build them, and store them in a registry. It handles dis-
tributed environments, by receiving image specifications and collaborating with other instances
over a distributed broker. Such a collaboration permits to signal about images being, or hav-
ing already been built, and to alert regarding the technical inability to support a specification.
Although it only supports MirageOS in its current form, it can be extended to support other
unikernel platforms with limited modifications. The prototype is of around 2.9 KLoC. This
framework is based on four components.

• First, one or several repositories is/are in charge of hosting the technical description of
modules that can be integrated into the unikernel images. Our implementation prototype
of these components is developed in Python, using the flask framework. The content of the
repository is statically specified in the application, and is accessed through HTTP requests.

• Second, a client emits requests for the unikernel images to be generated. Our prototype
takes a unikernel image specification as input at start up, and emits a corresponding request
to all the available generators on the network. This client is an application written in Java,
with messaging and logging capabilities similar to the generators.

• Third, a generator can be allocated multiple times, in each infrastructure, and can be
configured with a specific set of repositories. This design choice is motivated by the multi-
cloud support: each generator instance can cope with the technical description of the sole
module supported by the infrastructure, preventing the building of unikernel images on an
infrastructure unable to operate it. This application is written with the Java programming
language.

• Finally, the AMQP-compliant broker is in charge of supporting the interactions between
the client and the generator instances in a multi-cloud context. Our prototype exploits the
RabbitMQ [130] message broker.

The design of this prototype is driven by both the framework for generating protected unikernels,
and the cloud environment. The generator is able to get instructions from a client, to determine
the dependencies and source codes of unikernels, to build unikernels, and to store them.

The different components collaborate all along the operation of the framework. The client
emits over the message broker the request for the unikernel image to be build to the listening
generators, but does not wait for feedback from them. The generators listen on the message
broker for incoming unikernel building requests. When a generator is not able to cope with the
building of an image, it notifies other generators of its inability to handle the request. When the
image is already prepared, it notifies all the other generators, so they do not have to proceed
with the building of an image. The client simply obtains the already generated image. When
the generator starts and finishes the image generation, it also notifies other generators to prevent
them from starting a similar job during the ongoing image building process. The generator can
also receive requests for importing and exporting produced images from a persistent storage.

The requests that are received by the generator are composed of three fields. The
request-name field identifies the unikernel to be processed. The action field selects the pro-
cessing to apply (e.g. “build”,“building” and “already-prepared-image”). The arg field can
supply parameters for indicating actions requiring additional arguments. Figure 6.2 details an
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example of a request for building a unikernel image labeled protectedHttpd. It integrates four
unikernel modules: Dispatch, AccessControlModule, AccessControlModuleDispatchHook and
AccessControlModuleConfig.

1 {
2 "action ":" build",
3 "request -name ":" protectedHttpd",
4 "arg ":"[
5 {
6 \"module -name \":\" Dispatch\",
7 \"module -configuration \" : []
8 },{
9 \"module -name \":\" AccessControlModule \",
10 \"module -configuration \" : []
11 },{\"module -name \":\" AccessControlModuleDispatchHook \",
12 \"module -configuration \" : []
13 },{\"module -name \":\" AccessControlModuleConfig \",
14 \"module -configuration \" : []
15 }
16 ]"
17 }

Figure 6.2: Example of a request to build a unikernel image

In the repository, the technical description of available modules is organized as follows. Each
repository is a set of technical descriptions of modules. Each of them is characterize by (i) a
name to identify it, (ii) a method to obtain its implementation, (iii) the remote location of this
element, (iv) a method to import it locally, (v) the location where to insert it and (vi) several
available configuration options. The latter is a list of a technical configurations reflecting how
the module can be configured. Each configuration option contains (i) a name to identify it
relatively to a module, (ii) a method indicating how the configuration is proceeded technically,
(iii) an argument to identify technical resources involved in the configuration process, (iv) the
number of arguments expected from the specification, and (v) the default options to be set if no
option argument are set. All the methods are not necessarily supported by all the generators,
considering multiple unikernel platforms. Figure 6.3 gives an example of a unikernel module
description.

The image generation processing is composed of several steps:

1. The generator receives a valid unikernel build request.

2. If an already built image is found, it is notified to other generator instances and the job is
aborted.

3. If an similar on-going job is found, it is notified to other generator instances and the job is
aborted.

4. A backoff delay elapses to enable other generator instances to terminate the current job, if
other corresponding images or jobs are found.
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1 [{
2 "name": "AccessControlModule",
3 "origin -strategy ": "http",
4 "origin -location ": "http :// lightning.lan :8888/ sec/

accesscontroldynamic.ml",
5 "destination -strategy ": "download",
6 "destination -location ": "./ accesscontroldynamic.ml",
7 "configuration -points ": [{
8 "configuration -name": "security_monitor_url",
9 "strategy ": "instanceoption",
10 "content ": "--moon_url=",
11 "arguments -nmb": 1,
12 "default ": "https :// moon_url /"
13 }, {
14 "configuration -name": "security_domaine",
15 "strategy ": "instanceoption",
16 "content ": "--moon_domain =",
17 "arguments -nmb": 1,
18 "default ": "default_moon_domain"
19 }, {
20 "configuration -name": "pull_security_mode",
21 "strategy ": "instanceoption",
22 "content ": "--pull_security_mode =",
23 "arguments -nmb": 1,
24 "default ": "true"
25 }]
26 }, {
27 "name": "AccessControlModuleDispatchHook",
28 "origin -strategy ": "http",
29 "origin -location ": "http :// lightning.lan :8888/ sec/

dispatch.ml",
30 "destination -strategy ": "download",
31 "destination -location ": "./ dispatch.ml",
32 "configuration -points ": []
33 }, {
34 "name": "AccessControlModuleConfig",
35 "origin -strategy ": "http",
36 "origin -location ": "http :// lightning.lan :8888/ sec/config

.ml",
37 "destination -strategy ": "download",
38 "destination -location ": "./ config.ml",
39 "configuration -points ": []
40 }]

Figure 6.3: Example of a unikernel module description
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Figure 6.4: A screenshot of the unikernel generator starting a build job

5. The capability of the generator to handle the request is checked. In case of a negative
result, a notification is emitted and the job is aborted.

6. The build job is notified to other generators.

7. The build job is processed.

(a) A workspace is initialized.
(b) The build request is unwrapped to retrieve module technical implementations and

configure them accordingly.
(c) The image is built and linked.
(d) The build is closed.

8. The notification of the build success is notified to other generators.

Any build process can be interrupted by external notifications, before the backoff delay is elapsed.
These steps are implemented to support multiple implementations. Figure 6.4 shows different
steps during the generation of a unikernel image.

6.2.2 Moon Framework

The design and the implementation of the Moon framework is not part of the work of this thesis.
The components are taken off-the-shelf as an appliance developed by the research projects trusted
cloud and security management from Orange Labs. The source code is available at [106].

Moon integrates the OpenStack tool-suite to cope with the keystone authorization and au-
thentication appliance. The keystone decision process is delegated to a Moon instance and its
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policy engine. The framework is internally defined around two different planes. The usage plane
supports user-centric policies while control plane hosts the security policy affecting a whole cloud.
As stated in [119], the decoupling between these two planes permits each user to elaborate their
own policies with respect to the global one, enabling the support for multi-tenant cloud. More-
over, Moon supports instances on multiple infrastructures thanks to a slave management feature,
as described in [27]. It can be allocated as a master instance or a slave instance. A master node
is in charge of managing the data of the security policy and propagating policy updates to slave
nodes. A slave node processes the incoming decision requests from keystone, fetches only required
elements from the master, and acts as cache for policies in case of connectivity loss with the mas-
ter. This feature makes Moon compatible with the security policy management in multi-cloud
environments.

In the perspective of the SDSec framework of this thesis, this feature makes Moon to provide
the Security Orchestrator entity and contribute to the Policy Decision Point policy. The master
node contains the materials for building and hosting cloud-wide security policies, similarly to
the Global Security Policy (GSP). Slaves nodes cope with incoming decision requests and have
a dedicated security policy in cache and aligned with their enforcement perimeter, similarly to
the Tenant Level Security Policy (TLSP). Currently, the Moon framework is affected by several
shortcomings affecting its compliance with the architecture. First, the implemented security en-
gine is limited to access control, thus limiting addressable security functions to authorization and
authentication. Moreover, Moon slave instances are only able to respond to incoming requests
and not to proactively configure protected components to conform to a security statement, as
expected from the security statement protocol, described in section 3.4.4. Finally, in case of se-
curity policy updates, the master node pushes the modifications to slave nodes, contravening to
the security policy discovery protocol.

6.2.3 HTTP Authentication and Authorization for MirageOS Unikernels

We have also developed an HTTP authentication and authorization mechanism for MirageOS
unikernels. The prototyping relies on (i) a policy decision point (PDP) taking local security
decisions in phase with the security orchestrator (SO), (ii) a policy enforcement point (PEP)
enforcing these decisions on a unikernel resource and (iii) a generator of constrained unikernel
images containing the corresponding PEP. The PDP takes as input the user (subject) requesting
an access to a resource, the resource being accessed (object), and the action describing the
modalities of this access. In accordance with the security orchestrator policy, the PDP will grant
or deny the access to the resource. The PEP is implemented on the unikernel resource as a hook
into the access routine, in order to prevent any forbidden access to the resource.

Technically, the considered resource is a secured HTTP server over a MirageOS unikernel [91],
which was extended to implement an access control mechanism including authorization and
authentication. The MirageOS platform is based on the strongly-typed OCaml programming
language. It does not propose ready-to-use applications but provides an SDK to design them.
We therefore considered the web server from the mirage-skeleton repository [97], which relies
on the CoHTTP library [33]. This module is integrated to the generated unikernel images. Its
access verification feature is invoked through a hook inserted in the web server, in the resource
retrieval routine: while a granted access does not impact the resource retrieval, a negative decision
results in a 403-type HTTP code response to the client. The instantiation of these unikernels is
supervised by a uKVM [160] monitor running over a KVM hypervisor. This permits to generate
a specific VM monitor for each unikernel, whose unused features can be proactively disabled.

Three different approaches have been implemented for the PDP: (i) an internal PDP, (ii) a
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pushing PDP and (iii) a pulling PDP. The first approach integrates the decision process into
the unikernel. The policy knowledge together with the PDP is integrated to the image during
its unikernel generation, and no interaction with any external agent is required during the life-
time of the unikernel virtual machines. The second approach considers an external PDP agent
interacting with the PEP according to a push communication model. The third approach is
based on an external PDP agent interacting with the PEP according to a pull communication
model. Technically speaking, the configuration of the security mechanism with the internal
configuration is performed before the image building process, through the manual provisioning
of the authorized_buffer and forbidden_buffer variables in the source code of the secu-
rity mechanism. Figure 6.5 showcases an example of the internal configuration of this module.
To enable the push communication model, the unikernel image needs to be launched with the
pull_security_mode boot argument set to false. In this state, the unikernel opens up to the port
38001 to receive configuration directives. As the Moon security orchestrator does not support
yet this model, we have sketched up a plain text protocol. The pull model relies on a permanent
connection between the unikernel and the Moon interface to get the corresponding access rights
in an demand manner. The Moon orchestrator provides the corresponding access decision. These
results are both located in the content of the response and its header.

1 let buffer_authorized :( authorization list ref) = ref
2 [
3 ({ resource = "%2 Fmyfile.html"}, [
4 {login = "mylogin "; password = "mypassword "};
5 ])
6 ]
7
8 let buffer_forbidden :( authorization list ref) = ref
9 [
10 ({ resource = "%2 myfile2.html"}, [
11 {login = "mylogin2 "; password = "mypassword2 "}
12 ])
13 ]

Figure 6.5: Configuration example of the HTTP authentication and authorization mechanism

6.2.4 Application Firewalling for Mirage OS Unikernels

As an extension of the previously presented mechanism, we have developed an application fire-
wall for Mirage OS web server. This security mechanism enforces an access control on incoming
HTTP requests to accept or refuse their processing. The core data model remains the same than
the programmable HTTP authentication: An identification element is stored inside a cookie in
the client browser. It is involved in the process of access control decision taking. The action
is delegated to the HTTP method used by the browser to access a resource. The supported
configuration models remain strictly the same, with similar operational modalities of configura-
tion. Therefore, this module is again designed to cope with the Moon orchestrator. Figure 6.6
describes a configuration example for this mechanism.
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1 (* Policy specification - Data structure to convert to a heap to
implement cache or pushing *)

2 let buffer_authorized :( authorization list ref) = ref
3 [
4 ({ resource = "%2 Findex.html"}, [
5 {subject = "mylogin "; action = "GET"};
6 ])
7 ]
8
9 let buffer_forbidden :( authorization list ref) = ref
10 [
11 ({ resource = "%2 Fmyfile2.html"}, [
12 {subject = "mylogin2 "; action = "GET"}
13 ])
14 ]

Figure 6.6: Configuration example of the application firewalling mechanism

6.3 Evaluation Scenarios

In this section, we evaluate the performances of the proposed solution with respect to protected
unikernels that are generated. We exploit the security mechanisms previously mentioned to
evaluate our framework through extensive series of experimentations. A particular interest has
been given, within this evaluation, to the PDPs and PEPs, which constitute key components
to this integration, through the interactions between the security control plane and the security
resource plane.

6.3.1 Experimental testbed

The experiments have been performed on the following testbed. The host system features an Intel
Xeon E5-1620 CPU at 8x3.6 GHz with 8 GB of RAM. It executes an up-to-date version of the
Ubuntu 16.04 LTS distribution with the linux kernel 4.4.0-112. Unikernel images are built with
MirageOS 3.0.8 development kit. The virtual machines are instantiated with the uKVM monitor
0.2.2-1. They are equipped with 1 vCPU and 512 MB of RAM, and the latest version of available
modules from their distribution. The PDP interacts with the security orchestrator based on the
moon_bouchon interface (version 2018-01-30) from the Moon project. This interface permits to
emulate the behavior of the Moon orchestrator and the interactions with the PDP to support
access control. The connectivity amongst unikernels is based on a virtual network built with
OpenVSwitch 2.5.2 [115]. The performance evaluation has been done using the ApacheBench [2]
framework and the time standard tool.

6.3.2 Performance of the three approaches

In a first series of experiments, we wanted to evaluate the performance of the three approaches
individually, and in particular quantify the overhead induced by the outsourcing of the PDP (pull
or push approaches) from the protected unikernel virtual machines. In our TOSCA-based security
framework, the PDP outsourcing is a decision which is taken by the SecTOSCA interpreter, for a
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given security mechanism and according to a given service topology to be protected. The security
requirements are transmitted by the SecTOSCA interpreter to the security orchestrator through
the security policy. In the case of an internal PDP, the security requirements can be directly
integrated to the unikernel images, through dedicated modules, enforcing a decision process
internal to the protected unikernels. In that context, we have analyzed different parameters
related to both the building and the operation of protected resources.

Considered Approach Image Size (MBio)
Internal PDP 7.5
Pull PDP 8.1
Push PDP 8.1

Table 6.1: Comparison of protected unikernel image sizes

We first quantified the size of generated unikernel images implementing the three approaches
previously presented (internal, pull-based and push-based). Table 6.1 gives a comparison of the
size of these images. We expected the size of the image corresponding to an internal approach
to be higher than the two other external approaches. In fact, it appears that the size of the
internal approach is of 7.5 MBio, with the size of the external approaches reaches 8.1 MBio.
This overhead of 600 KBio for the external approaches is due to the additional modules required
to support the interactions between the PDP and the PEP components of our solution.

We also evaluated the time required for generating protected unikernels from the source
code, with these different approaches. The obtained results are detailed on Figure 6.7 for the
internal approach (PDP-Int), the push-based external approach (Push-PDP), and the pull-based
external approach (Pull-PDP). We observed a generation time of around 4.1 seconds with the
first approach, while it reaches 4.45 and 4.47 seconds with respectively the push-based and pull-
based approaches. The overhead induced by the external approaches is again observed here, and
can be correlated with the sizes of protected unikernel images.

We were also interested in quantifying the resource consumption of a protected unikernel
virtual machine based on these different images. A particular focus has been given to the network
performance presented on Figure 6.8 and to the memory consumption given on Figure 6.9.
In both cases, we are varying the number of active connections from 0 to 1000 connections
during experiments. We can observe on the first figure that the push-based and pull-based
approaches introduce an overhead of respectively 41.3% and 1.2% in average, in comparison to
the internal approach. The number of requests sent to the protected unikernel virtual machines
is supposed to induce the same number of responses from them. The differences at high load are
due to the congestion of the machine. A similar phenomenon is observable on the second figure,
where the memory consumption related to the push-based and pull-based approaches generate
an overhead of 32.7% and 1.2%, in comparison to the internal approach. For instance with 500
active connections, we obtain a resource consumption of 38 KB with the internal scenario, against
39 KB and 51 KB with respectively the push-based and pull-based scenarios. The overhead
percentages amongst the different approaches are relatively stable, while varying the number of
active connections.

Finally, we compared the average time required for processing HTTP requests, including the
authentication and authorization processing, with the three different approaches. The results
are described on Figure 6.10, where we considered again the same range for the number of
active connections. The different approaches produce experimental results that are quite similar,
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Figure 6.7: Generation time of protected unikernel images

with an average authenticated HTTP processing time of 11 ms. Several peaks can be observed
with the pull-based approach, in particular with a number of connections between 600 and 1000
connections. This can be due to the external PDP which becomes a bottleneck with respect to
authenticated requests, in such a pull-based scenario.

6.3.3 Performance with a pool of protected unikernels

In a second series of experiments, we wanted to evaluate the performance of our solution with
a pool of protected unikernels. We consider a pool that may be composed of both unikernels
implementing the pull-based approach and unikernels implementing the push-based approach.
In our security framework, the deployment of these unikernels is performed by the cloud orches-
trator, while the selection of unikernel types (pull-based or push-based) is under the charge of
the SecTOSCA interpreter. We performed the same experiments than previously to quantify
the memory consumption, the networking performance, and the authenticated HTTP request
processing time with such a pool of 100 protected unikernels. During experiments, we varied the
ratio of unikernel virtual machines implementing each of the two approaches, and considered a
workload from 1 to 1000 incoming concurrent connections.

We can observe on Figure 6.11 the results obtained with this pool with respect to the memory
consumption. As we expected, the memory consumption increases when the incoming workload
is growing. In particular, we notice that a higher proportion of push-based unikernel virtual
machines can minimize the memory consumption by 22.0% on average during experiments. These
results can be explained by the requirement for unikernel virtual machines based on the pull-
based approach to include further features in their networking stack (e.g. DNS resolver, HTTP
client library) compared to the push-based approach. The same observation can be done for
the networking performance, as shown on Figure 6.12. A higher ratio of push-based unikernel
virtual machines improves the performances. However, the impact might be less significant, when
considering an enhanced pull-based approach integrating caching facilities.
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Figure 6.8: Network performance with the different approaches

We also evaluated the performance on authenticated HTTP processing with the different
workload scenarios. The experimental results are detailed on Figure 6.13, where we plotted the
cumulated processing time. These results clearly show that increasing the number of push-based
unikernels decreases such a processing time for all the considered scenarios. Most of the time,
the processing time is growing with the number of concurrent active connections. Except for the
scenarios with a ratio of more than 90% of push-based unikernels, the one connection workload
induces a significantly longer processing time than any other workload scenarios. These results
may be due to the DNS resolution time, which takes a more important part in the overall request
processing.

6.3.4 Security policy propagation and enforcement

In a last series of experiments, we were interested in evaluating the time required for the propa-
gation and enforcement of a security policy with the different approaches. This also concerns the
updates of the security policy. In our security framework, such a policy update typically occurs
during the operation phase and is triggered by the security orchestrator. Chapter 4 has already
shown the costs induced by the regeneration of unikernel images. We focus in this series of ex-
periments on the reconfiguration of security mechanisms integrated into the protected unikernel
virtual machines. This reconfiguration requires the regeneration of the unikernel images in the
case of the internal approach. The scenario is based on unikernel virtual machines, whose the
security policy is updated through the moon_bouchon interface provided by the Moon security
orchestrator. The security policy corresponds to an access control list. We considered the worst
case scenario, where this list may be subject to changes at any resource access request. The size
of the list is varying from 0 to 40,000 rules during the experiments. We quantified the delay time
between the update of the security policy specification and its enforcement on the cloud resource.
The effective enforcement was evaluated from the perspective of a client, through the sending of
authenticated HTTP requests to access resources, and the evaluation of observed access rights.
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Figure 6.9: Memory consumption with the different approaches

Figure 6.10: Authenticated HTTP processing time with the different approaches

The results are detailed on Figure 6.14 showing the delay time obtained with the pull-based
and push-based approaches. We can observe a behavior close to linearity with respect to the
size of the access control list. We expected that the delay times obtained with the push-based
approach will be better than the ones induced by the pull-based approach, which was the case.
The push-based approach leads to a shorter delay time, in comparison to the pull-based approach
showing an overhead of 48,6% on average. The delay times obtained with the internal approach
are sensitively higher than the two other approaches, and are more distributed. The overhead
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Figure 6.11: Memory consumption with a pool of protected unikernels

Figure 6.12: Network performance with a pool of protected unikernels

induced by the internal approach is 5.82 times higher due to the compilation time. The update
of the security policy requires to regenerate the unikernel images implementing the internal ap-
proach. Proactive strategies permit to anticipate changes in the security policy and to re-generate
unikernel images at an early stage. In the mean time, these experiments permitted to quantify
the scalability of the three different approaches with respect to the size of the access control
list. While it generates an additional network traffic, the pull-based approach operates success-
fully for the different experimental scenarios from 0 to 50,000 security rules. The push-based
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Figure 6.13: Cumulative HTTP processing time with authentication based on a pool of protected
unikernels

Figure 6.14: Time performance for the propagation and enforcement of a security policy based
on the different approaches

approach was capable of supporting up to 33,500 rules with a single unikernel, due to memory
depletion, while the internal approach supported up to 21,750 rules with a single unikernel, due
to unikernel compilation. This corresponds to a high number of security rules with respect a
single unikernel scenario. These experiments have shown the compared performances of three
different approaches to implement our TOSCA-oriented security framework.
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6.4 Summary

In this chapter, we have detailed the prototyping and evaluation of our security software-defined
approach based on the generation of protected unikernels. In particular, we have developed the
Young unikernel generator, as well as two unikernel security mechanisms (HTTP authentication
and authorization, and application firewall). The proposed solution is compatible with the Moon
security orchestrator. In that context, we have detailed the different steps corresponding to the
generation of protected resources. Our prototyping has served as a support for evaluating the
performances of our solution based on extensive series of experiments. In particular, we have
quantified the benefits and limits of three approaches of configuration for the protected resources.
We have also considered the scenario of a pool of protected unikernel virtual machines, with
various performance metrics, including memory consumption, network performance and request
processing time. Finally, we have quantified the delay time from the specification of a change in
the security policy to its enforcement on unikernel resources.
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This chapter concludes the thesis manuscript. We give a summary of the main contributions
related to our software-defined security approach for distributed clouds. We then point out
several research perspectives related to these works.

7.1 Summary of Contributions

The large-scale deployment of distributed clouds has clearly increased the complexity of security
management for supporting cloud services. In particular, it introduces new constraints to be
taken into account, with respect to the multi-cloud and multi-tenancy properties of these in-
frastructures. This concerns the requirements of coping with the technical specificities and the
dynamism of cloud resources that have to be protected, while ensuring the completeness of the
security perimeter. The diversity of protection mechanisms also supposes a flexible and adap-
tive security management. This thesis addresses the security of distributed clouds, by proposing
a unified and homogeneous security management plane able to protect cloud services in that
context. It relies on the generation of protected unikernel resources, on the programmability of
security mechanisms using the software-defined paradigm, and on the specification of security
policies based on the TOSCA cloud orchestration language. The thesis approach, as well as the
related contributions, are highlighted on Figure 7.1.

115
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Figure 7.1: Synthesis of the thesis approach and related contributions

7.1.1 Analyzing Virtualization Models for Cloud Security

We have first conducted a comparative analysis of virtualization models, where we described
their properties with respect to cloud environments to be protected. The considered models
include virtualization based on type-I hypervisors, virtualization based on type-II hypervisors,
OS-level virtualization and unikernel-based virtualization. We have identified several threats
affecting these virtualization models, and analyzed their criticality with regard to each virtual-
ization model. We have also evaluated their impacts by determining security attacks leveraged
by them. We have determined several countermeasures and recommendations serving as raw
material to frame our security management approach. In particular, we have shown that the
unikernel-based virtualization provides interesting security properties with respect to cloud re-
sources. It permits to restrict the attack surface, while generating light-weight virtual machines.
The security requirements should be taken into account at an early stage, as soon as the building
of unikernel images, in order to support the full integration of security mechanisms. We have also
mentioned the benefits of security programmability for protecting resources in distributed cloud
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infrastructures. This programmability can drive both the simple configuration, or the whole
rebuilding of the cloud resources based on unikernels.

7.1.2 Designing a Software-defined Security Architecture

In order to support security management in distributed clouds, we have designed a software-
defined security strategy for configuring security mechanisms in a multi-cloud and multi-tenant
context. It relies on an architecture composed of different abstraction levels. The first one
supports security management at the scale of a distributed cloud, with the involvement of a
security orchestrator. The second one supports a security decision process at the scale of a
tenant. It addresses the specificities related to the local context of each tenant. The third one is
composed of cloud resources to be protected, that expose interfaces to be configured accordingly.
We have detailed the different components of this architecture, as well as their interactions.
We have evaluated the adequacy of this architecture with a set of realistic scenarios. While
being aligned with the recommendations issued from the comparison of virtualization models,
this architecture brings the gap between the generation of protected unikernel resources, and the
specification of policies using the TOSCA cloud orchestration language.

7.1.3 Generating Protected Unikernel Resources on The Fly

We have then proposed a framework for generating protected unikernel resources. The pur-
pose is to build specific unikernel images that include security mechanisms and cope with secu-
rity requirements. These security mechanisms are programmable, matching with the proposed
software-defined security architecture. The building of unikernel images relies on both the config-
uration of internal components and the integration of programmable security mechanisms. The
generation of resources can be performed in an on-the-fly manner, through the deployment of
image instances (virtual machines) that have a limited lifespan. Contextual changes can lead to
reconfiguring the instances, or may induce the building of new unikernel images. Some instances
may also be pooled in a proactive manner, in phase with the rapid elasticity of cloud infrastruc-
tures. We have described the modeling of unikernel images, as well as algorithms supporting the
generation process. The benefits of this unikernel-based generation include the sanitization of
images at building time, the reduction of the attack surface of instances based on these images,
and more generally the code portability in line with multi-cloud and multi-tenant deployments.
The image generation process has been prototyped and evaluated through extensive sets of ex-
periments, in the context of statically-configured security mechanisms for authentication and
authorization over unikernel webservers using MirageOS.

7.1.4 Extending the TOSCA Cloud Orchestration Language

We have extended a cloud orchestration language to drive the generation and configuration of
cloud resources using the software-defined security architecture. This language specifies a cloud
service, as a topology of resources that can be spread over several cloud infrastructures. We have
considered two extensions for this language. A first one, called UniTOSCA, permits to describe
the internal modules of unikernel images, ans supports the generation of protected unikernel
resources. The second one, called SecTOSCA, addresses the specification of security constraints,
according to different security levels. These specifications are used to build unikernel resources
and to configure security mechanisms related to cloud services. The orchestration language goes
from the design of cloud resources to their deployment and operation, contributing to the concept
of secured-by-design cloud resources.
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7.1.5 Prototyping and Evaluating the Solution

We have complemented the prototyping and evaluation of our solution, through different im-
plementations. In particular, we have considered the case of (i) a dynamically-configured au-
thorization and authentication mechanism for MirageOS webservers, (ii) an applicative firewall
for MirageOS webservers, as well as (iii) a dedicated unikernel image generator for distributed
cloud environments. This prototyping has served as a support to evaluate the proposed solution
in a quantitative and qualitative manner. We have analyzed the adequacy with the security
orchestrator part of the Moon framework developed at Orange Labs. We have also considered
different configuration strategies to parameterize security mechanisms, and have evaluated their
impact on the performances of unikernel resources (compilation time, memory consumption,
networking) that are protected. We have also investigated the benefits and limits of pooling
unikernel virtual machines, that can be deployed on cloud infrastructures pro-actively. We have
finally quantified the enforcement delay of security policies over unikernel resources, according
to different configuration strategies.

7.2 Discussions

This work has focused on proposing a software-defined security approach for distributed clouds,
that combines a security management architecture with an on-the-fly generation of protected
unikernel resources, and an extended orchestration language. We have also identified several
limitations with respect to this approach in its current form. First, the generation of protected
resources is restricted to unikernel resources. The properties of these resources facilitate the
enforcement of security policies and permit to reduce the attack surface. It also redefine the
configuration approach through the rebuilding of resources. We have not considered in the
scope of our work scenarios that combine unikernel resources, with other virtualization models
(such as type-I virtualization), while our multi-tenant multi-cloud architecture is sufficiently
generic to support these cases. Second, the interactions amongst PEPs and PDPs could be more
complex. We have considered that a given PEP is under the authority of a single PDP. Scenarios
where PEPs (and the corresponding security mechanisms) could be configured by several PDPs
might also be interesting to be investigated. This introduces potential redundancy and propriety
mechanisms, with respect to enforcement perimeters. Finally, we considered in our work that
cloud resources composing the cloud service to be protected, are available all along the operation
of this service. These resources (including PDPs and PEPs) may be subject to faults and
failures that should be taken into account by the security orchestrator (in addition to the cloud
orchestrator).

7.3 Research Perspectives

The contributions developed during this thesis, related to our software-defined security approach
for distributed clouds, has opened up new research perspectives.

7.3.1 Exploiting Infrastructure-As-Code for Security Programmability

Our solution relies on the generation and instantiation of unikernel images to enforce security
policies. This choice is motivated by their simplified architecture contributing to a low attack
surface, and being in phase with an on-the-fly generation of resources to be protected. However,
this leaves aside the other resources composing cloud infrastructures nowadays. Our approach
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is extensible to other categories of resources. In particular, the infrastructure-as-code [8] trend
might contribute to cover additional resources, and to support the integration of a large variety
of security mechanisms. In addition, the short life-cycle of OS-level virtualization resources make
them also interesting candidates with respect to on-the-fly generation. However, this requires to
be able to control the codebase of containers to be protected.

7.3.2 Supporting the Security of IoT Devices

The Internet-of-Things (IoT) [166] permits to interconnect physical devices (vehicles, home
appliances, sensors) to the network, in order to build new services. It may also exploit and interact
with resources coming from cloud infrastructures. The physical nature of resources, as well as the
criticality of collected data, exposes them to security attacks. The work developed in this thesis
could be extended to cover the protection of IoT devices. The properties of unikernels seem to be
in phase with the limited resources (energy, cpu, bandwith) of IoT devices. However, the costs
of programmability and reallocation processes of unikernel resources have to be evaluated over
these constrained environments. It is also important to quantify the effects of low power and
lossy networks on the security enforcement. Security management algorithms should be adapted
to address these limitations.

7.3.3 Checking the Consistency of Security Policies

Software-defined security permits to decouple the control of security mechanisms from the cloud
resources that integrate these mechanisms. The TOSCA cloud orchestration language has been
extended to specify security constraints according to various levels of security. These levels corre-
spond to different security contexts, and may impact on both the building of unikernel resources
and their configuration at runtime. In addition, these resources are typically distributed over
several cloud infrastructures. Checking methods and techniques should be exploited to guaran-
tee the consistencies of specified security policies. In particular, this concerns the verification of
orchestration policies and their instantiations in different contexts.

7.3.4 Contributing to Cloud Resilience

The design of this security management plane has been motivated by the protection of cloud re-
sources from malicious activities. The solution proposed in this thesis could be extended to cover
other resilience requirements (e.g. fault tolerance), using dedicated mechanisms complementary
to security mechanisms. Our approach permits to exploit both the building and configuration of
resources to address these resilience requirements. For instance, some unikernel resources could
be proactively elaborated and instantiated to address some specific faults and failures. In the
same manner, resilience constraints could be introduced, when specifying TOSCA cloud orches-
tration policies. In that context, we could take benefits from the multi-cloud property to increase
the resilience of cloud services.
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8.1 Linux Features for OS-level Virtualization Support

OS-level virtualization is based upon host OS features. To explicit the isolation ability supported
by the container engines, we describe several examples of Linux OS mechanisms contributing to
it.

Chroot. The chroot() system call [31] enables the modification of the root filesystem directory
of the running process. It is also invokable through the chroot base utility.

Its feature contributes to the container filesystem isolation, but is not sufficient to guarantee
it, as demonstrated in [151].

In term of implementation, the chroot() system call is implemented in [41], while libcontainer
is instead tied to the pivot_root() system call.

Union Mount. Reunifying several media through only one mount operation and mount point
defines the union mount concept. It enables to restrain the access to each implicated media, and
provides an homogeneous abstraction layer through the mount point.

Type of isolation Related Linux features
Process execution settings uts, usr, mnt, cgroup namespaces
In-Memory process execu-
tion environment

pid, ipc namespaces, Cgroup

Networking Linux Bridge, Virtual Ethernet, net namespace, Cgroup
I/O Chroot, Union Mount, mnt Namespace, Cgroup

Table 8.1: Linux features supporting OS-level virtualization
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One use-case of the operation are the live operating system, designed to be burned on a read-
only medium but supporting persistent data storage with an additional writable media: in these
conditions, when booting, the operating system proceed to a union mount on root filesystem
with the read-only media and the writable media: the first provides the system files whereas the
second one is used to store any written file, including user data.

Union filesystem implementations include UnionFS, AuFS (advanced multi-layered unifica-
tion filesystem), and the OverlayFS. The latter has integrated Linux kernel mainline since version
3.18.

Docker is compatible with AuFS. More concretely with this filesystem, when instantiating a
container, it proceeds to the union-mount of /var/lib/ docker/containers/<container-id>
and /var/lib/docker/aufs/diff/ as the container root filesystem, according to [39].

Linux-Bridge and Virtual Ethernet. Linux-Bridge [46] is the implementation of the 802.1d
standard. It takes over the layer-2 trame forwarding, required for network isolation.

To fulfill this objective, it must be deployed with by a virtual NIC technology enabling a
network virtualization such as virtual-ethernet (veth), MAC Virtual Lan (macvlan) or virtual lan
(vlan).

In the implementation area, container engine relies on various subset of these technologies.
LXC [41] allows veth, macvlan or vlan usage, whereas libcontainer (and so, Docker [108]) imple-
ments Linux-Bridge and virtual ethernet for its Linux backend.

Control Group (Cgroup). Resource access regulation in Linux OS is performed by the con-
trol group subsystem (referred as cgroup).

In the second version of this subsystem, the ruling is modeled as a hierarchy whose node
can be related to resource-specific access ruling controllers [59]. Each one of these relationships
defines a resource access control rule for the node and its children. Finally, a node can be purely
abstracted or referred to a process.

The first version of cgroup is still heavily used, and is based on a multi-hierarchy ruling
model, whose each root node corresponds to a controller (labeled as subsystem) [96].

lmctfy and libcontainer are still employing the first version of cgroup, but are planning their
migrations.

Namespaces. Allowing Linux processes to address a subset of kernel resources is achieved
through the Linux namespaces subsystem. It contributes to the isolation capability of Linux-
compatible container engines.

More precisely, there are seven different namespaces, each of them alluding to a resources
type: the mnt namespace isolates a group of mount point from other process, the net one acts
on network interfaces, the pid one is responsible for process tree isolation , the inter-process
communication (Posix Message Queue) isolation is handled through the ipc one, the uts one
manages hostname, the user one isolates unix user list, and, if the second version of cgroup is
loaded, the cgroup namespace permits several concurrent cgroup configuration [59].

The namespace mechanism is manipulable with three system calls. clone() creates a child
process with the same execution context as it ancestor, and accepts additional arguments to
create new namespace. unshare() takes part in separating the execution environment of the
different process. Finally, setns() changes the namespace of the current process.
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8.2 Glibc System Calls Invokation Implementation

1 #include <sysdep.h>
2
3 /* Please consult the file sysdeps/unix/sysv/linux/x86 -64/ sysdep.h

for
4 more information about the value -4095 used below. */
5
6 /* Usage: long syscall (syscall_number , arg1 , arg2 , arg3 , arg4 , arg5 ,

arg6)
7 We need to do some arg shifting , the syscall_number will be in
8 rax. */
9
10
11 .text
12 ENTRY (syscall)
13 movq %rdi , %rax /* Syscall number -> rax. */
14 movq %rsi , %rdi /* shift arg1 - arg5. */
15 movq %rdx , %rsi
16 movq %rcx , %rdx
17 movq %r8, %r10
18 movq %r9, %r8
19 movq 8(%rsp),%r9 /* arg6 is on the stack. */
20 syscall /* Do the system call. */
21 cmpq $-4095 , %rax /* Check %rax for error. */
22 jae SYSCALL_ERROR_LABEL /* Jump to error handler if error. */
23 ret /* Return to caller. */
24
25 PSEUDO_END (syscall)

Figure 8.1: Routine from the source code from the GLib responsible for syscall invokation

Figure 8.1 exposes the routines in source code of Glibc 2.23-2 responsible for syscall invokation
from unprivileged mode, on x86 64bits system architecture. The syscall function (1) configures
CPU registers with syscall number and parameter, (2) relinquishes control to the kernel running
in privileged mode with the syscall instruction and then (3) proceed to error management.
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9.1 Introduction

9.1.1 Contexte des travaux

La croissance de l’Internet a été rendue possible par la mise en service de centres de données.
Ils fournissent les ressources de calculs (applications logiciels, matériels virtualisés) qui peuvent
être partagées et associées pour constituer des services informatiques complexes. Leur utilisation
mesurée et efficace permet de diminuer les coûts de mise en place et d’exploitation des infrastruc-
tures les supportant. Plus particulièrement, l’informatique nuagique (ou Cloud Computing en
anglais) a émergé comme modèle permettant l’usage de ces ressources sur Internet. Dans cette
optique, un fournisseur de service d’informatique nuagique (CSP) peut mettre à disposition
plusieurs types de ressources de calculs (à différents degrés de gérabilité) à des consommateurs
pour leurs usages propres. Selon l’institut NIST, l’informatique nuagique peut être mise à dis-
position en accord avec trois modèles de services différents : le logiciel en tant que service, la
plateforme en tant que service et l’infrastructure en tant que service. Ce dernier modèle repose
abondamment sur les techniques de virtualisation système pour assurer la configuration et la
mise en disponibilité de ressources matérielles aux consommateurs de façon sécurisée.
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Ainsi, la virtualisation est une composante importante de l’informatique nuagique permettant
de partager et d’isoler les ressources logicielles et matérielles mises à disposition des consomma-
teurs. Dans ce contexte, la virtualisation système permet de distinguer l’exécution de logiciels
des ressources matérielles mises à profit. Cette approche est porteuse de bénéfices en termes
de sécurité et de résilience. En effet, le contrôle opéré par l’hyperviseur sur les applications
opérées en environnements virtualisés peut être exploité pour en contraindre le comportement
et pour détecter toute activité susceptible de lui être malveillante. Cependant, la mise en œuvre
d’une telle stratégie requiert de connaître et de disposer de moyens propres aux spécificités de
l’application à protéger.

Les ressources en environnement d’informatique nuagique peuvent être mises à l’usage d’util-
isateurs spécifiques ayant des besoins propres dans les traitements appliqués aux ressources.
Dans ce contexte, chaque utilisateur peut être appelé ”tenant” et un service d’informatique
nuagique en acceptant plusieurs est dit ”multi-tenant”. De façon similaire, un service est dit
”multi-cloud ” s’il repose sur l’usage de multiples infrastructures collaborant entre elles. La mise
en œuvre d’un service multi-cloud et multi-tenant constitue le cloud distribué, et implique une
gestion plus complexe. À titre d’exemple, un ensemble de machines virtuelles supportant un
service d’informatique nuagique peut être réparti vers plusieurs propriétaires, et être hébergé par
plusieurs centres de données alors que chaque machine virtuelle héberge ses propres programmes
et dépendances vis-à-vis des centres de données où elle doit être déployée.

Selon une perspective orientée sécurité, si la gestion opérée sur les ressources vise à satis-
faire des objectifs de protection, toute erreur peut compromettre la sécurité des données d’un
tenant ou d’un service tout entier. La propriété de large accessibilité réseaux de l’informatique
nuagique aggrave la portée de ce constat, en augmentant l’exposition de services d’informatique
nuagique et en en faisant des cibles de choix pour des acteurs malveillants. Un premier axe
pour mettre en œuvre une gestion de la sécurité s’intéresse au domaine de l’informatique au-
tonome (autonomic computing). Celui-ci a offert de nouveaux moyens pour assurer la gestion et
l’orchestration en traitant les enjeux d’auto-configuration, d’auto-réparation, d’auto-optimisation
et d’auto-protection de systèmes complexes. Il fournit une approche soutenant l’automatisation
des environnements d’informatique nuagique, réduisant de facto le coût de leur entretien et les
manipulations qui sont sources d’erreurs. Un second axe concerne le paradigme de la programma-
bilité, qui cherche à séparer les ressources exploitées de leurs gestions en deux plans distincts. À
titre d’illustration, la programmabilité des réseaux isole les équipements réseaux, constituant le
plan de données, de leur gestion, constituant le plan de gestion. L’association de ces deux axes
ouvre une nouvelle perspective pour automatiser et orchestrer la sécurité des clouds distribués.
Dans ce contexte, l’objectif principal de cette thèse est de concevoir un plan de gestion de la
sécurité unifié et homogène pour la protection de clouds distribués en faisant le lien entre les
techniques d’orchestration et de virtualisation.

9.1.2 Identification des problématiques

La constitution d’un tel plan de gestion de la sécurité sous-entend l’identification des critères
permettant de déterminer si une ressource est dans un état accepté et se comporte tel qu’attendu,
ou si elle requiert une opération de gestion pour atteindre un tel état. La politique de sécurité
modélise cette distinction d’état, et est mise en œuvre par une architecture de sécurité et des
algorithmes. Une telle architecture permet de s’assurer qu’une application se trouve dans un
état acceptable et se conforme à la politique de sécurité. Elle détecte les ressources qui ne sont
pas en accord avec les exigences de la politique et les contraint à se mettre en conformité. Dans
le contexte de cette thèse, nous nous focalisons sur la gestion de configurations de mécanismes
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qui sont programmables.
Par définition, le cloud distribué doit prendre en compte les propriétés de multi-tenancy et

de multi-cloud. D’un point de vue sécurité, la multi-tenancy sous entend la possibilité pour
chaque utilisateur de définir sa propre politique de sécurité, dont le périmètre d’actions se limite
à leurs ressources seules. Cela requiert du plan de gestion de la sécurité qu’il puisse distinguer les
différents tenants. La propriété de multi-cloud peut limiter la mise en œuvre de la politique de
sécurité. En effet, en déployant des ressources sur certaines infrastructures, certaines d’entre elles
ne peuvent se contraindre à la politique de sécurité car l’infrastructure ne fournit pas les moyens
techniques de satisfaire cette dernière. Par conséquent, le plan de gestion devrait pouvoir prendre
en compte les spécificités de l’infrastructure lors de l’orchestration de la sécurité des ressources.

Le cloud distribué peut aussi induire des exigences sur le plan de gestion de la sécurité. Les
infrastructures clouds exploitent une large variété de ressources allouées. Le plan de gestion de
la sécurité requiert une architecture capable de manipuler tout type de ressources allouées. En
effet, chaque ressource allouée est assujettie à ses propres contraintes techniques : ceci impacte
la façon dont le plan de gestion doit mettre en œuvre son action protectrice. Le plan de gestion
devrait rester indépendant de ces spécificités techniques dans son processus de prise de décision,
alors que leurs mises en œuvres techniques devraient les prendre en compte. La contrainte de
haute disponibilité cadre la gestion de l’exploitation de ces ressources. Ces ressources peuvent
être exposées à des attaques à tout moment. Il est donc nécessaire de s’assurer de la mise en
œuvre de la sécurité tout au long de leurs cycles de vie. Finalement, la conception d’un tel plan
de gestion de la sécurité doit prendre en compte la variabilité des exigences de sécurité et des
mécanismes associés. Cela sous entend l’extensibilité du langage de spécification de politiques
de sécurité, mais aussi les moyens d’intégrer les mécanismes de protection.

Dans cette optique, cette thèse propose la conception d’un plan de gestion homogène de
la sécurité pour les clouds distribués selon les problématiques suivantes : (i) Comment peut-
on concevoir un plan dédié à la gestion de la sécurité pour mettre en œuvre une protection
automatique et homogène de la protection du cloud distribué ? (ii) Comment peut-on s’assurer
de la compatibilité entre les ressources du cloud distribué à protéger et la protection offerte par
ce plan de gestion ? (iii) De quelle façon les besoins de sécurité des ressources clouds devraient-ils
être spécifiés pour la mise en action d’une orchestration de sécurité à partir du plan de gestion ?

9.1.3 Approche proposée

Cette thèse propose une approche centrée sur la programmabilité de la sécurité dans le cloud dis-
tribué. Nous utilisons la programmabilité des mécanismes de sécurité protégeant les ressources
du cloud pour concevoir un plan de gestion homogène de la sécurité. Celui-ci sert de support
pour l’orchestration de sécurité. Il est complété par un plan de sécurité niveau tenant supervisant
les opérations de gestion adaptées à chaque tenant, mais supportant de multiples infrastructures.
Cette solution permet de diminuer la complexité due à la distribution des ressources. Les mé-
canismes de sécurité sont intégrés à l’intérieur même des ressources nécessitant une protection,
durant leurs phases de conception. Cette solution permet une intégration holistique des mécan-
ismes de sécurité dans les ressources cloud et d’exposer des interfaces au plan de gestion. De
plus, sécuriser des ressources avant leurs allocations contribue à l’assurance que la protection
est mise en œuvre tout au long du cycle de vie de la ressource. Dans le cadre de cette thèse,
nous étudions le cas de clouds distribués et composés de ressources unikernels. Nous tirons
profit des propriétés de ces ressources pour réduire la surface d’attaque et faciliter l’intégration
de mécanismes de sécurité au moment de la construction. Les ressources peuvent être reconfig-
urées ou reconstruites pour intégrer les changements dans le contexte de la sécurité. En outre,
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nous étendons le langage d’orchestration TOSCA pour conduire la construction de ces ressources
unikernels nécessitant une protection et fournir leur configuration selon différents niveaux de
sécurité.

9.2 Contributions

La contribution de cette thèse s’organise en quatre parties.

9.2.1 État de l’art des modèles de virtualisation pour le cloud et analyse de
leur sécurité

Tel que précédemment précisé, la virtualisation système est un des constituants principaux des
environnements d’informatique nuagique. En effet, il permet de dissocier les ressources de calculs
de l’infrastructure les supportant. Les virtualisations basées sur les hyperviseurs de type I et de
type II sont, depuis des décennies, les modèles de références pour mettre en œuvre la virtualisation
système. Cependant, l’émergence de nouveaux modèles remet en cause ce statu quo. Dans cette
première contribution, nous présentons ces modèles et dressons une analyse comparative de leur
sécurité. Plus particulièrement, nous identifions les vulnérabilités de ces modèles, au regard des
menaces existantes, et pondérons leurs criticités en tenant compte des menaces les exploitant.
Enfin, nous identifions les contres-mesures et recommandations qui sont applicables pour soutenir
la sécurité des ressources virtualisées dans le contexte d’infrastructures d’informatique nuagique.

Modèles de virtualisation système

La virtualisation système définit une architecture permettant l’exécution simultanée et l’isolation
de multiples systèmes sur un même environnement matériel. Elle réside en l’insertion d’une
couche logicielle encapsulant un système pour en contrôler l’accès aux ressources matérielles. Ce
contrôle est permissif et transparent pour les instructions non sensibles des ressources matérielles.
En revanche, les instructions sensibles sont interceptées, et leurs effets simulés auprès de ce
système. Cette couche d’encapsulation peut être disposée selon deux approches différentes.
Dans un premier cas, elle s’exécute en exploitant directement les ressources matérielles, ce
qui définit le modèle de virtualisation d’hyperviseurs de type-I. Dans l’autre cas, la couche
d’encapsulation s’exécute comme application d’un système hôte, et lui délègue sa gestion des
ressources matérielles. Elle correspond au modèle de virtualisation d’hyperviseurs de type-II. Les
contraintes opérationnelles liées à la mise en application de ces deux modèles et la recherche
du gain de performances ont incité l’émergence récente de nouveaux modèles de virtualisation :
la virtualisation au niveau du système d’exploitation (S.E.) est un modèle circonscrivant les en-
vironnements virtualisés à des ensembles d’applications pour permettre à un système hôte d’y
exercer plus efficacement un contrôle dessus. La virtualisation basée sur l’unikernels simplifie
l’architecture des systèmes en environnements virtualisés en les limitant au support d’une seule
application gérant elle-même les ressources de cet environnement (unikernel). Nous constru-
isons une architecture de référence pour effectuer une analyse comparative de la sécurité de ces
quatre modèles de virtualisation. Elle est constituée des niveaux machine virtuelle, système
d’exploitation hôte, hyperviseur et matériel. La virtualisation système apporte les fonctionnal-
ités de sécurité d’isolation inter-machines virtuelles et entre machines virtuelles et système hôte,
d’introspection de machines virtuelles et de prise d’instantanés.
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Analyses de sécurité

Nous analysons les différentes vulnérabilités affectant chacun des composants de l’architecture
de référence. Nous dressons une taxonomie autour des différents composants impactés : ap-
plication en machine virtuelle (gestion de la mémoire et interface des logiciels), S.E. invité en
machine virtuelle (gestion du logiciel,supervision du noyau du S.E.), hyperviseur (diaphonie entre
les machines virtuelles, diaphonie entre les machines virtuelles et l’hôte, console de gestion) et
environnement d’exécution de l’hyperviseur (S.E. hôte, matériel). La pondération des différentes
vulnérabilités au regard des modèles de virtualisation montre que le modèle de virtualisation basé
sur l’unikernel est le moins sujet aux vulnérabilités identifiées dans l’état de l’art. Nous définis-
sons ensuite un modèle de menaces considérant la malveillance de l’utilisateur d’une machine
virtuelle et de l’administrateur de l’hyperviseur. Nous appliquons la méthodologie d’analyse
de menaces STRIDE pour identifier et classifier les attaques affectant les composants selon les
menaces d’impersonification, d’altération, de répudiation, d’exfiltration d’informations, de déni
de service et d’élévation de privilège. Puis, nous les classifions selon si (i) elles ne sont pas liées
à la compromission de composants de l’architecture, (ii) si elles la provoquent, ou (iii) si elles
la nécessitent pour être mises en œuvre. Les différentes attaques identifiées sont justifiées et
circonstanciées par une analyse les concernant.

Contre-mesures

À partir du travail d’analyse de sécurité, nous proposons des contre-mesures et des recomman-
dations visant la sécurisation de l’architecture de référence pour l’informatique nuagique. Les
recommandations identifiées ne remettent pas en cause les bénéfices en terme de sécurité de la
virtualisation, et ont un impact limité sur l’exploitabilité des ressources. La première recom-
mandation concerne l’intégration de mécanismes de sécurité dès la conception de l’hyperviseur
et de la machine virtuelle. Dans ce contexte, le processus de construction des image unikernels
permet l’insertion de tels mécanismes apportant une haute couverture sécuritaire de la ressource
virtualisée. La deuxième recommandation vise la minimisation de la surface d’attaque des com-
posants de l’architecture de référence. De part sa simplicité, la virtualisation basée sur l’unikernel
est la plus à même de contribuer à sa mise en place. La dernière recommandation propose
l’établissement de la programmabilité des mécanismes de sécurité pour en adapter constamment
la configuration face aux nouvelles menaces et attaques. Cette programmabilité peut être ex-
ploitée par une activité d’orchestration, exploitant les résultats de surveillance de ressources.
Elle peut aussi être étendue à la génération des images unikernels sécurisée. Ces trois différentes
recommandations cadrent l’élaboration de notre approche exploitant la programmabilité de la
sécurité pour la protection du cloud distribué.

9.2.2 Architecture pour la programmabilité de la sécurité dans le cloud dis-
tribué

La gestion des ressources en environnements cloud est complexifiée par les propriétés de multi-
tenancy et de multi-cloud du cloud distribué. En effet, elles doivent être prises en compte dans la
spécification et la mise en rigueur de politiques de sécurité s’adressant à des ressources réparties
entre plusieurs infrastructures et tenants. Cette complexité est renforcée par les changements
dans le contexte de différentes ressources à protéger induite par les environnements d’informatique
nuagique. Les mécanismes automatiques permettent de déporter certaines tâches de gestion aux
infrastructures, contribuant ainsi à l’automatisation des services clouds. Le paradigme de la
programmabilité fournit aussi une perspective intéressante pour configurer des mécanismes de
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sécurité et les aligner sur des exigences de sécurité destinées à différentes infrastructures. Dans
cette optique, nous proposons une architecture reposant sur la programmabilité de la sécurité
pour instaurer une gestion centralisée et par politique pour la sécurité des environnements clouds
distribués. Les objectifs visés par cette architecture sont ainsi la cohérence de la gestion de la
sécurité, l’indépendance de la gestion vis-à-vis des contextes techniques de chaque ressource, le
support de multiples fonctionnalités de sécurité et la diminution du coût d’exploitation des services
sécurisés.

Architecture de programmabilité de la sécurité

Pour répondre à ces différents objectifs, nous proposons l’approche SDSec respectant trois
principes :

1. La gestion de la sécurité est répartie selon deux plans distincts : (i) le plan de contrôle
de la sécurité est en charge de l’interprétation de la politique de sécurité et du processus
de prise de décision, et (ii) le plan de ressources correspond à l’ensemble des ressources
nécessitant une protection, avec les mécanismes de sécurité pouvant la mettre en œuvre.
Ces mécanismes de sécurité sont typiquement dénués de pouvoir décisionnel.

2. La logique mise en œuvre par une fonctionnalité de sécurité est laissée pour le compte du
plan de contrôle, correspondant aux fonctionnalités d’un orchestrateur. Les mécanismes
de sécurité fournissent l’outillage nécessaire à la mise en œuvre de cette logique. Une
fonctionnalité de sécurité se représente donc comme une logique du plan de contrôle, et un
ensemble de mécanismes à insérer dans le plan de ressources.

3. Les interactions entre ces deux plans se limitent aux interfaces de configuration des mé-
canismes de sécurité. Elles ne concernent que les informations nécessaires pour configurer
ces mécanismes en accord avec la politique de sécurité.

Nous mettons en œuvre l’approche SDSec dans une architecture supportant la spécification
de deux types de politiques de sécurité : (i) la politique de sécurité globale (GSP) définissant
formellement les objectifs de sécurité et la politique de sécurité du tenant (TLSP), découlant de
la première, définissant des règles auxquelles les ressources d’un tenant doivent se conformer.
Celles-ci sont hébergées et interprétées respectivement par l’orchestrateur de sécurité (SO) et le
point de décision (PDP), prenant part au plan de contrôle de la sécurité. Les points de mise en
œuvre (PEPs) correspondent aux mécanismes insérés dans le plan de ressources, qui interagissent
avec les PDPs et sont chargés d’appliquer une configuration sur les ressources clouds pour les
conformer à la TLSP. Nous définissons les protocoles permettant aux composants de se découvrir
entre eux, et d’interagir pour permettre une mise en œuvre pro-active et réactive de la GSP. Le
support de multiples tenants est assuré par l’usage de multiples PDPs propres à la gestion de
chacun des tenants. Le support de multiples infrastructures est assuré par la capacité des PDPs
d’interagir avec des PEPs instanciés sur des infrastructures différentes.

Évaluation de l’architecture

La viabilité de l’approche est vérifiée à travers cinq scénarios d’usages sélectionnés dans l’environ-
nement industriel de cette thèse. Pour chaque scénario, nous explorons le comportement de
l’architecture, et vérifions qu’elle assure la sécurité des ressources via le plan de gestion. Les
scénarios explorés incluent (i) l’allocation de ressources, (ii) la mise à jour de politiques de
sécurité, (iii) l’attaque de ressources, (iv) la tentative de connexion sous contrôle d’accès et (v)
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la suppression de ressources du cloud. Nous complétons cette vérification analytique par une
étude technique relative à l’implémentation de l’architecture : nous (i) identifions les contraintes
auxquels les implémentations des composants doivent se conformer, (ii) vérifions l’existence de
solutions techniques déjà disponibles et (iii) relevons les verrous restant à lever avant de permettre
une implémentation exhaustive de l’architecture. Cette dernière catégorie inclut l’intégration et
l’adaptation des mécanismes de sécurité aux ressources du cloud nécessitant une protection. Nous
nous intéressons à ces deux verrous dans les autres contributions de la thèse.

9.2.3 Génération à la volée d’images unikernels protégées

La mise en œuvre de la politique de sécurité sur les ressources est assujettie à la disponibilité de
mécanismes de sécurité qui leur sont adaptés. En effet, le contraire peut induire l’impossibilité
de prendre en compte (i) toutes les ressources dans le périmètre à protéger et (ii) toutes leurs
spécificités techniques et l’intégralité de leurs cycles de vie. Nous considérons l’usage d’unikernels
pour constituer des ressources clouds intégrant des mécanismes de sécurité programmables. En
effet, un système unikernel n’intègre qu’une seule application avec ses seules dépendances, per-
mettant donc une couverture plus large du système par un mécanisme de sécurité. De plus,
l’unikernel fournit un cadre de travail pour construire des images de systèmes et y effectuer
une gestion ex-situ, facilitant l’adaptation des mécanismes aux systèmes à protéger. Enfin, leur
court cycle de vie permet une reconfiguration rapide et en profondeur des images instanciées par
leur dé-allocation, reconstruction et ré-instanciation. Nous proposons un cadre de travail pour
construire des images unikernels en accord avec des exigences de sécurité.

Framework pour la génération d’images unikernels sécurisées

Nous concevons un cadre de travail permettant de générer des images unikernels contraintes pour
intégrer des mécanismes de sécurité. Celui-ci étend l’architecture de référence de construction
d’image unikernels : les besoins en mécanismes de sécurité sont interprétés à partir du code source
de l’image unikernel et de ses dépendances, et sont stockés sur un dépôt qui leur est dédiés. Un
plan de gestion séparé est en charge de (i) contrôler la construction des images, (ii) de gérer le
cycle de vie des instances et (iii) de piloter la configuration des mécanismes de sécurité pour qu’ils
se conforment à des exigences sécuritaires. Les mécanismes ainsi insérés dans l’image unikernel
bénéficient ainsi de ses simplicités d’architecture pour viser la configuration de la pile d’exécution
et des routines de gestion de ressources matériel en complément de l’application elle-même. Ils
sont aussi intégrés dès la conception des ressources à protéger, contribuant à une protection de
bout-en-bout de leurs cycles de vie. Nous fournissons une modélisation des images unikernels
les représentant comme un ensemble de composants logiciels configurables. Elle nous permet
définir l’algorithme d’interprétation des exigences de sécurité, d’insertion des mécanismes et de
construction d’images pour chaque évolution du contexte de sécurité. Pour améliorer la réactivité
de cette construction, nous proposons une extension de l’algorithme pour supporter le stockage
et l’usage d’images pré-construites. Les bénéfices de cette approche incluent (i) une surface
d’attaques réduite grâce aux propriétés de l’unikernel, (ii) une vérification de la consistance de
l’image protégée dès sa construction et (iii) une portabilité des ressources à protéger accrue.
Nous vérifions aussi que cette architecture de génération s’insère à celle de programmabilité de
la sécurité pour le cloud distribué.
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Évaluation des performances

Nous utilisons un prototype de serveur HTTP implémenté sur la plateforme unikernel MirageOS
sur l’hyperviseur uKVM, et nous concevons un prototype de mécanisme de sécurité capable de
s’y insérer. Ce mécanisme de sécurité implémente l’authentification et l’autorisation des requêtes
HTTP. Il est programmable par configuration dans son code source. Nous menons une évaluation
quantitative du prototype en comparant (i) son support de charge, (ii) sa consommation mémoire,
(iii) son coût mémoire par requête et (iv) le temps de traitement d’une requête. Cette étude
compare un unikernel protégé face à une version non protégée et à des solutions basées sur
les hyperviseurs de type I, de type II et la virtualisation niveau S.E. De plus, nous évaluons
le temps de génération de l’image protégée selon le nombre de mécanismes de sécurité et leur
temps de redémarrage séquentiel. Les résultats de ces évaluations soutiennent que le surcoût lié
à l’insertion de mécanismes de sécurité est très acceptable tout en offrant une protection très
couvrante pour les ressources unikernels.

9.2.4 Spécification de l’orchestration pour la programmabilité de la sécurité

Définir une politique de sécurité à l’échelle d’un cloud distribué signifie savoir appréhender
l’hétérogénéité des modèles de sécurité et des mécanismes envers les différents tenants et in-
frastructures. Chacun d’entre eux doit être pris en compte dans le contexte d’une collaboration
inter-tenant et inter-cloud. Dans ce contexte, le langage TOSCA permet de spécifier la constitu-
tion et l’orchestration de services cloud devant être déployés sur de multiples infrastructures et de
multiples tenants. Les services sont représentés selon une topologie où chaque nœud correspond
à un composant instanciable et où les arêtes modélisent une relation entre eux. Les processus
d’orchestration spécifiés viennent modifier l’état des nœuds et de leurs relations. Nous proposons
deux extensions ai modèle TOSCA : la première, UniTOSCA, vient détailler la constitution des
ressources unikernels à construire et à orchestrer, et sert de base à l’intégration des mécanismes de
sécurité. La seconde, SecTOSCA, permet de positionner des exigences de sécurité sur le service
selon plusieurs niveaux de sécurité. En outre, nous fournissons un cadre de travail les mettant
en application pour constituer des services de cloud distribués protégés. Ce travail se conforme
aux besoins de (i) se conformer au contexte du cloud distribué, (ii) d’employer la virtualisation
basée sur l’unikernel pour mettre en œuvre la sécurité, et (iii) de s’adapter aux évolutions du
contexte de sécurité du service.

Extensions du langage TOSCA

Nous fournissons une modélisation du langage TOSCA en permettant la description des nœuds
et de relations les associant. Celle-ci prend en compte le paradigme ”orienté objet” présenté par
TOSCA en distinguant (i) les types de nœuds et de relations, qui spécifie les fonctionnalités qu’ils
fournissent et requièrent, (ii) leurs modèles, qui renseigne les propriétés pour les rendre instan-
ciables, et (iii) leurs instances elles-mêmes. Nous étendons TOSCA en UniTOSCA pour décrire
les images unikernels comme un ensemble de composants tout en identifiant les fonctionnalités
et nouvelles dépendances qu’apporte chacun d’entre eux. Dans cette spécification, un ensemble
cohérent de ces composants s’interprète comme un type du langage TOSCA. Chaque composant
peut voir des propriétés de configuration renseignées. Cette approche nous permet d’exploiter
une spécification UniTOSCA avec notre cadre de travail de génération d’images unikernels pro-
tégées. Enfin, nous proposons l’extension SecTOSCA, qui étend UniTOSCA, pour spécifier les
exigences de sécurité à différentes échelles du service, de sa globalité à un composant précis. Les
exigences identifiées peuvent faire référence à de multiples fonctionnalités de sécurité, telles que
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le contrôle d’accès, la détection d’intrusion ou le chiffrement. SecTOSCA permet de spécifier
de multiple valeurs sur les propriétés de sécurité pour permettre de définir différents niveaux
de sécurité, qui pourront être mise ne œuvre durant l’exploitation du service. Cette extension
permet ainsi de spécifier une orchestration de sécurité lors de la construction et le déploiement
d’un service, mais aussi durant son exploitation.

Architecture de conception et d’exploitation de services d’informatique nuagique
sécurisés

Nous définissons également un cadre pour construire, déployer et exploiter un service cloud selon
notre approche SDSec en exploitant nos différentes extensions de TOSCA. Il repose sur une ar-
chitecture couvrant la phase de conception et celle d’exploitation d’un service cloud à protéger.
Durant la première phase, l’interpréteur SecTOSCA consomme une spécification pour configurer
l’orchestrateur de sécurité et produire une spécification UniTOSCA intégrant les mécanismes de
sécurité adéquat. L’interpréteur UniTOSCA la récupère pour générer une spécification TOSCA
standard et les images unikernels qu’elle exploite. Durant la phase d’exploitation, la spécifica-
tion TOSCA est exploitée par un orchestrateur cloud pendant que l’orchestrateur de sécurité
effectue un suivi des ressources unikernels instanciées pour vérifier que leurs configurations se
conforment à sa politique. En cas de divergence, il peut reconfigurer les ressources incriminées
en exploitant les interfaces de configuration des mécanismes de sécurité embarqués, ou reconstru-
isant et ré-instanciant intégralement la ressource. En cas d’évolution du contexte de sécurité,
il peut contacter l’orchestrateur cloud pour procéder à un changement de niveau de sécurité,
induisant une reconfiguration globale du service.

Implémentation et évaluation

Nous proposons un prototype d’implémentation visant (i) la construction d’un générateur d’images
unikernels pour le cloud distribué (cadriciel Young), (ii) l’usage du cadriciel Moon comme orches-
trateur de sécurité, (iii) la conception et le développement de mécanismes de sécurité, insérables
dans des unikernels, (iii) d’autorisation/authentification de requêtes HTTP et (iv) de pare-feu
applicatif HTTP. Ces deux mécanismes implémentent trois modèles de programmation : (i) par
reconstruction complète de la ressource (interne), (ii) par récupération de configuration d’une
entité et (iii) par réception de configurations depuis une entité. Nous conduisons une évalua-
tion quantitative sur les performances des ressources protégées par un modèle de sécurité, sur
un ensemble de ressources associant plusieurs modèles et sur leurs propriétés de sécurité. Les
résultats montrent que le modèle de récupération de configurations impacte les performances de
la ressource protégée, mais est le modèle permettant la propagation plus rapide de politiques de
sécurité tout en en supportant des plus complexes.

9.3 Conclusion

9.3.1 Analyse critique

Ce travail s’est focalisé sur la proposition d’une approche basée sur la programmabilité de la
sécurité pour le cloud distribué, qui combine une architecture de gestion de la sécurité, avec
une génération à la volée d’images unikernels protégées, et avec une extension d’un langage
d’orchestration. Le travail présenté est néanmoins limité en plusieurs aspects. Premièrement,
seules des ressources unikernels peuvent être générées en version protégée. Leurs propriétés
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facilitent la mise en œuvre de politiques de sécurité et permettent de réduire la surface d’attaque.
Elles redéfinissent l’étape de reconfiguration au travers la reconstruction complète de ressources.
Nous n’avons pas pris en compte des scénarios associant la virtualisation basée sur l’unikernel avec
d’autres modèles de virtualisation, alors que le contexte de cloud distribué s’avère suffisamment
généraliste pour englober de tels scénarios. Deuxièmement, les interactions entre PEPs et PDPs
pourraient être plus complexes. En effet, nous avons seulement considéré le cas où tout PEP
est sous l’autorité d’un seul PDP. L’étude de scénarios assignant plusieurs PDPs auprès d’un
seul PEP (et des mécanismes de sécurité associé) relèverait un certain intérêt. Elle pourrait
introduire des mécanismes de redondance et des propriétés vis-à-vis des périmètres protection.
Enfin, nous considérons que les ressources en charge de la protection du service sont disponibles
durant toute l’exploitation du service. Ces ressources (dont les PDPs et PEPs font partie)
peuvent être affectées par des erreurs et des défaillances qui devraient être prises en compte par
l’orchestrateur de sécurité (en sus de l’orchestrateur cloud).

9.3.2 Perspectives de recherche

Les contributions apportées par cette thèse ouvrent la porte à plusieurs perspectives de recherche,
identifiées ci-dessous :

Utilisation de l’infrastructure en tant que code (IaC) pour la programmabilité de
la sécurité. Notre solution se base sur la construction et l’instanciation d’images unikernels
pour mettre en œuvre des politiques de sécurité. Nous avons effectué ce choix en raison de leur
architecture simplifiée limitant leurs surfaces d’attaques et permettant la génération à la volée
d’images unikernels protégées. Cependant, cela laisse de côté tous les autres types de ressources
constituant les infrastructures cloud de nos jours. Notre approche est extensible aux autres
catégories de ressources. En particulier, l’approche de l’infrastructure en tant que code pourrait
contribuer à prendre en compte ces autres ressources et à supporter l’intégration d’une large
variété de mécanismes de sécurité. En complément, le court cycle de vie des conteneurs usant
de la virtualisation au niveau du S.E. permet de les considérer comme des potentiels candidats
vis-à-vis de la génération à la volée de ressources. Cependant, cela requiert un accès à la base
de code des conteneurs à protéger.

Support de la sécurité des objets connectés. L’Internet des objets connectés permet
d’interconnecter des objets physiques aux réseaux de données pour élaborer de nouveaux services.
Il peut aussi exploiter et interagir avec des ressources localisées dans des infrastructures clouds.
Les propriétés physiques des ressources et la criticité des données collectées les exposent à des
attaques. Les travaux avancés dans cette thèse peuvent être étendus pour englober la protection
des objets connectés. Les propriétés des ressources unikernels s’alignent avec les contraintes de
limitation en ressources des objets connectés. En revanche, le coût de la programmabilité et
des ressources et de leurs réallocations reste encore à être évalué dans ce type d’environnements
contraints. L’évaluation des effets d’une alimentation électrique limitée et d’une connectivité
fluctuante est aussi un enjeu important à traiter. Les algorithmes de gestion de la sécurité
doivent être adaptés pour prendre en compte ces limitations.

Vérification de la cohérence de politiques de sécurité. La programmabilité de la sécu-
rité permet de séparer la gestion des mécanismes de sécurité des ressources qui les intègrent.
Le langage d’orchestration TOSCA a été étendu pour spécifier des contraintes de sécurité selon
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différents niveaux de sécurité. Ces niveaux correspondent à différents niveaux de contexte de sécu-
rité influençant autant la construction d’images unikernels que leur configuration à l’instanciation.
De plus, ces ressources sont généralement réparties sur plusieurs infrastructures clouds. Des
méthodes et techniques de vérification devraient être exploitées pour s’assurer de la cohérence
des politiques de sécurité spécifiées. En particulier, cela concerne la vérification de politiques
d’orchestration et de leurs mises en œuvre dans différents contextes.

Contribution à la résilience de l’informatique nuagique. La conception de ce plan de
gestion a été motivé par la protection de ressources d’informatique nuagique contre des activités
malveillantes. La solution proposée dans cette thèse peut être étendue pour traiter d’autres
exigences de résilience (ex: la tolérance aux fautes), en utilisant des mécanismes dédiés à cet
usage. Notre approche nous permet d’utiliser autant la construction que la configuration des
ressources pour intégrer les exigences de résilience. À titre d’illustration, des ressources unikernels
pourraient être pro-activement conçues et instanciées pour intégrer la gestion d’erreurs et de
défaillances particulières. De la même façon, les contraintes de résilience peuvent être intégrées
lors de la spécification des politiques d’orchestration cloud TOSCA. Dans ce contexte, nous
pourrions tirer profit de la propriété multi-cloud pour améliorer la résilience des services.
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Résumé

Dans cette thèse, nous proposons une approche pour la sécurité programmable dans le cloud
distribué. Plus spécifiquement, nous montrons de quelle façon cette programmabilité peut con-
tribuer à la protection de services cloud distribués, à travers la génération d’images unikernels
fortement contraintes. Celles-ci sont instanciées sous forme de machines virtuelles légères, dont
la surface d’attaque est réduite et dont la sécurité est pilotée par un orchestrateur de sécurité.
Les contributions de cette thèse sont triples. Premièrement, nous présentons une architecture
logique supportant la programmabilité des mécanismes de sécurité dans un contexte multi-cloud
et multi-tenant. Elle permet l’alignement et le paramétrage de ces mécanismes pour des services
cloud dont les ressources sont réparties auprès de différents fournisseurs et tenants. Deuxième-
ment, nous introduisons une méthode de génération à la volée d’images unikernels sécurisées.
Celle-ci permet d’aboutir à des ressources spécifiques et contraintes, qui intègrent les mécan-
ismes de sécurité dès la phase de construction des images. Elles peuvent être élaborées réactive-
ment ou proactivement pour répondre à des besoins d’élasticité. Troisièmement, nous proposons
d’étendre le langage d’orchestration TOSCA, afin qu’il soit possible de générer automatiquement
des ressources sécurisées, selon différents niveaux de sécurité en phase avec l’orchestration. En-
fin, nous détaillons un prototypage et un ensemble d’expérimentations permettant d’évaluer les
bénéfices et limites de l’approche proposée.

Mots-clés: Sécurité, Programmabilité, Cloud Distribué, Orchestration, Unikernel.

Abstract

In this thesis, we propose an approach for software-defined security in distributed clouds.
More specifically, we show to what extent this programmability can contribute to the protection
of distributed cloud services, through the generation of secured unikernel images. These ones
are instantiated in the form of lightweight virtual machines, whose attack surface is limited and
whose security is driven by a security orchestrator. The contributions of this thesis are threefold.
First, we present a logical architecture supporting the programmability of security mechanims in
a multi-cloud and multi-tenant context. It permits to align and parameterize these mechanisms
for cloud services whose resources are spread over several providers and tenants. Second, we
introduce a method for generating secured unikernel images in an on-the-fly manner. This one
permits to lead to specific and constrained resources, that integrate security mechanisms as soon
as the image generation phase. These ones may be built in a reactive or proactive manner, in
order to address elasticity requirements. Third, we propose to extend the TOSCA orchestration
language, so that is is possible to generate automatically secured resources, according to different
security levels in phase with the orchestration. Finally, we detail a prototyping and extensive
series of experiments that are used to evaluate the benefits and limits of the proposed approach.

Keywords: Security, Programmability, Distributed Cloud, Orchestration, Unikernel.





153


	Introduction
	Research Context
	Involvement of Virtualization in Cloud Computing
	Distribution of Resources over Cloud Environments
	Exposure to Security Attacks

	Problem Statement
	Contributions
	Analysis of Virtualization Models for Cloud Security
	Software-Defined Security Architecture for Distributed Clouds
	Generation of Protected Unikernel Resources
	Extensions of a Cloud Orchestration Language

	Outline of the Dissertation

	System Virtualization: from Threats to Cloud Protection Opportunities
	Introduction
	System Virtualization Models
	Context
	System Virtualization
	OS-Level Virtualization
	Unikernel Virtualization
	Synthesis

	Security Analysis based on the Reference Architecture
	Identification of Vulnerabilities
	Considered Threats and Attacks
	Compromise-Free Attacks
	Compromising Attacks
	Compromise-Based Attacks

	Counter-Measures
	Integration of security mechanisms at design time
	Minimization of the attack surface
	Adaptation based on security programmability

	Conclusions

	SDSec Architecture for Distributed Clouds
	Introduction
	Related Work
	Software-Defined Security Overview
	Objectives
	Design principles

	Software-Defined Security Architecture
	Security Orchestrator
	Policy Decision Points
	Policy Enforcement Points
	Interactions Amongst Components

	Architecture Evaluation
	Validation Scenarios
	Practical Considerations

	Summary

	On-the-Fly Protected Unikernel Generation
	Introduction
	Related Work
	Background on Unikernels
	Software-defined Security Framework Based on Unikernels
	On-the-fly Unikernel Generation
	Benefits of Unikernels for Software-defined Security
	Reactivity Improvement through Image Pooling
	Integration with the SDSec Architecture for Distributed Clouds

	Performance Evaluation
	Prototype Implementation
	Qualitative and Quantitative Evaluations

	Summary

	Topology and Orchestration Specification for SDSec
	Introduction
	Related Work
	TOSCA-Oriented Software-defined Security Approach
	Extensions of the TOSCA Language
	The TOSCA Language
	Describing Unikernels
	Specifying Security Requirements
	An Illustrative Case

	Underlying Security Framework
	Main Components
	Interpreting SecTOSCA Specifications
	Building and Orchestrating Unikernel Resources
	Adapting to Contextual Changes

	Summary

	Prototyping and Evaluation
	Introduction
	Implementation Prototypes
	Young Unikernel Generator
	Moon Framework
	HTTP Authentication and Authorization for MirageOS Unikernels
	Application Firewalling for Mirage OS Unikernels

	Evaluation Scenarios
	Experimental testbed
	Performance of the three approaches
	Performance with a pool of protected unikernels
	Security policy propagation and enforcement

	Summary

	Conclusions
	Summary of Contributions
	Analyzing Virtualization Models for Cloud Security
	Designing a Software-defined Security Architecture
	Generating Protected Unikernel Resources on The Fly
	Extending the TOSCA Cloud Orchestration Language
	Prototyping and Evaluating the Solution

	Discussions
	Research Perspectives
	Exploiting Infrastructure-As-Code for Security Programmability
	Supporting the Security of IoT Devices
	Checking the Consistency of Security Policies
	Contributing to Cloud Resilience

	List of Publications

	Appendix
	Linux Features for OS-level Virtualization Support
	Glibc System Calls Invokation Implementation

	Résumé détaillé en français du mémoire
	Introduction
	Contexte des travaux
	Identification des problématiques
	Approche proposée

	Contributions
	État de l'art des modèles de virtualisation pour le cloud et analyse de leur sécurité
	Architecture pour la programmabilité de la sécurité dans le cloud distribué
	Génération à la volée d'images unikernels protégées
	Spécification de l'orchestration pour la programmabilité de la sécurité

	Conclusion
	Analyse critique
	Perspectives de recherche


	Bibliography

