Caractérisation expérimentale et modélisation du panneau composite bois-ciment
Auteur / Autrice : | Mengya Li |
Direction : | Mohammed El Ganaoui, Mourad Khelifa |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences du bois et des fibres |
Date : | Soutenance le 11/12/2018 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale SIMPPé - Sciences et ingénierie des molécules, des produits, des procédés, et de l'énergie (Lorraine ; 2018-....) |
Partenaire(s) de recherche : | Laboratoire : LERMAB - Laboratoire d'Études et de Recherche sur le MAtériau Bois (Vandoeuvre-lès-Nancy) |
Jury : | Président / Présidente : Hassan Naji |
Examinateurs / Examinatrices : Rachid Bennacer, Salima Aggoun, Wen Chen | |
Rapporteurs / Rapporteuses : Rachid Bennacer, Salima Aggoun |
Mots clés
Mots clés contrôlés
Résumé
Les bétons légers, formés des fibres de bois et d’une pâte de ciment Portland, constituent une nouvelle alternative à explorer pour réduire l’impact environnemental des bâtiments. Ils sont utilisés dans la construction durable, comme des éléments secondaires, pour leurs performances thermiques, hydriques et mécaniques. Cependant, la généralisation de leur utilisation dans le bâtiment ne sera rendue possible sans résoudre certains verrous scientifiques liés à leur caractérisation et à leur formulation. Le présent travail s’inscrit dans cet objectif. Il s’agit de contribuer à la caractérisation de ces bétons légers à base des fibres de bois à travers l’expérience et la modélisation. Le module d’Young et la résistance à la rupture ont été mesurés par des tests de flexion et de compression. Un modèle numérique a été également développé pour prédire le comportement des éprouvettes en flexion et la réponse structurale des systèmes de coffrage permanent. La méthodologie numérique permet ainsi d’aider dans le choix des paramètres optimums pour une meilleure conception des panneaux de coffrage destinés à la construction. L’étude du comportement hygrothermique du matériau de construction bois-ciment a été abordée en s’appuyant sur l’expérience et la simulation. Les équations des transferts couplés de chaleur et d’humidité d’un milieu poreux ont été implémentées dans le logiciel Comsol Multiphysics®. En dernier, le modèle développé a été appliqué et validé sur plusieurs réponses dynamiques issues des tests hygrothermiques réalisés en interne. Les mesures des propriétés physico-thermique du matériau composite bois-ciment ont été ensuite intégrées dans le code Abaqus via une routine utilisateur Umatht dans l’objectif de simuler le comportement thermique à hautes températures des panneaux composites bois-ciment. Les profils des températures sont évalués et comparés à ceux des tests de carbonisation réalisés, à l’aide d’un panneau rayonnant, sur des échantillons exposés à un flux de chaleur uniforme de 6kW/m2. Les simulations montrent que le modèle développé est capable de prédire les profils de températures, la zone et la profondeur de la couche du charbon durant l’exposition au feu