Autour de quelques statistiques sur les arbres binaires de recherche et sur les automates déterministes
Auteur / Autrice : | Anis Amri |
Direction : | Philippe Chassaing, Rafik Aguech |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 19/12/2018 |
Etablissement(s) : | Université de Lorraine en cotutelle avec Université de Monastir (Tunisie) |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Élie Cartan de Lorraine (1997-.... ; Vandoeuvre-lès-Nancy, Metz) |
Jury : | Président / Présidente : Brigitte Chauvin |
Examinateurs / Examinatrices : Philippe Chassaing, Irène Marcovici, Nicolas Pouyanne | |
Rapporteurs / Rapporteuses : Wissem Jedidi, Hosam M. Mahmoud |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse comporte deux parties indépendantes. Dans la première partie, nous nous intéressons à l’analyse asymptotique de quelques statistiques sur les arbres binaires de recherche (ABR). Dans la deuxième partie, nous nous intéressons à l’étude du problème du collectionneur de coupons impatient. Dans la première partie, en suivant le modèle introduit par Aguech, Lasmar et Mahmoud [Probab. Engrg. Inform. Sci. 21 (2007) 133—141], on définit la profondeur pondérée d’un nœud dans un arbre binaire enraciné étiqueté comme la somme de toutes les clés sur le chemin qui relie ce nœud à la racine. Nous analysons alors dans ABR, les profondeurs pondérées des nœuds avec des clés données, le dernier nœud inséré, les nœuds ordonnés selon le processus de recherche en profondeur, la profondeur pondérée des trajets, l’indice de Wiener pondéré et les profondeurs pondérées des nœuds avec au plus un enfant. Dans la deuxième partie, nous étudions la forme asymptotique de la courbe de la complétion de la collection conditionnée à T_n≤ (1+Λ), Λ>0, où T_n≃n lnn désigne le temps nécessaire pour compléter la collection. Puis, en tant qu’application, nous étudions les automates déterministes et accessibles et nous fournissons une nouvelle dérivation d’une formule due à Korsunov [Kor78, Kor86]