Étude expérimentale du transfert paroi/fluide dans le cas d’un écoulement vertical vapeur/gouttes dans une géométrie tubulaire
Auteur / Autrice : | Juan David Peña Carrillo |
Direction : | Michel Gradeck, Alexandre Labergue |
Type : | Thèse de doctorat |
Discipline(s) : | Énergie et mécanique |
Date : | Soutenance le 10/12/2018 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale SIMPPé - Sciences et ingénierie des molécules, des produits, des procédés, et de l'énergie (Lorraine ; 2018-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Energies et Mécanique Théorique et Appliquée |
Jury : | Président / Présidente : Patricia Ern |
Examinateurs / Examinatrices : Lounès Tadrist, Nathalie Marie, Céline Caruyer, Jérôme Bellettre | |
Rapporteur / Rapporteuse : Lounès Tadrist, Nathalie Marie |
Mots clés
Mots clés contrôlés
Résumé
L’un des accidents de dimensionnement d’un réacteur à eau pressurisée est l’Accident de Perte de Réfrigérant Primaire (APRP). L’évènement initiateur d’un tel accident est une brèche sur le circuit primaire du réacteur entrainant une perte d’inventaire en eau, et de ce fait conduit à un assèchement des assemblages combustibles. En conséquence, une augmentation considérable de la température surviendrait à l’intérieur du cœur du réacteur. Ainsi, les gaines de combustible peuvent éventuellement se déformer et des zones dites ballonnées apparaitre. Ces zones vont avoir un fort impact sur l’efficacité du refroidissement du cœur du réacteur. Pour contribuer à l’étude thermohydraulique d’un APRP, la présente thèse a pour but la caractérisation expérimentale des interactions entre un écoulement diphasique de vapeur/gouttes et une zone partiellement bouchée. Afin de reproduire un tel scénario, le banc expérimental thermohydraulique COLIBRI a été conçu. Plusieurs configurations géométriques de la zone ballonnée, caractéristiques d’un APRP, sont analysées (longueur et taux de bouchage associés au ballonnement). Afin de caractériser les échanges thermiques paroi/fluide ainsi que la dynamique des gouttes, des diagnostics optiques et thermiques sont utilisés : l’Anémométrie Phase Doppler (PDA) pour mesurer le diamètre et la vitesse des gouttes, la Fluorescence Induite par Laser (LIF) pour mesurer la température des gouttes et la Thermographie Infrarouge (IR) afin d’estimer le flux de chaleur extrait du tube par l’écoulement. En parallèle, une modélisation du problème a été développée afin d’obtenir une approche théorique de la capacité de refroidissement de l’écoulement diphasique. Le système d’équations décrivant la conservation de la masse, de la quantité de mouvement et de l’énergie permettra d’estimer l’impact respectif des différents mécanismes de transferts thermiques mis en jeu ainsi que l’évolution spatio-temporelle des paramètres thermohydrauliques