Couplages FEM-BEM faibles et optimisés pour des problèmes de diffraction harmoniques en acoustique et en électromagnétisme
Auteur / Autrice : | Boris Caudron |
Direction : | Xavier Antoine, Christophe Geuzaine |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 25/06/2018 |
Etablissement(s) : | Université de Lorraine en cotutelle avec Université de Liège |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Élie Cartan de Lorraine (1997-.... ; Vandoeuvre-lès-Nancy, Metz) |
Jury : | Président / Présidente : Hélène Barucq |
Examinateurs / Examinatrices : François Alouges, Sébastien Pernet, Jean-Paul Martinaud, Stéphanie Chaillat | |
Rapporteurs / Rapporteuses : François Alouges, Sébastien Pernet |
Mots clés
Mots clés contrôlés
Résumé
Dans cette thèse, nous proposons de nouvelles méthodes permettant de résoudre numériquement des problèmes de diffraction harmoniques et tridimensionnels, aussi bien acoustiques qu'électromagnétiques, pour lesquels l'objet diffractant est pénétrable et inhomogène. La résolution de tels problèmes est centrale pour des calculs de surfaces équivalentes sonar et radar (SES et SER). Elle est toutefois connue pour être difficile car elle requiert de discrétiser des équations aux dérivées partielles posées dans un domaine extérieur. Étant infini, ce domaine ne peut pas être maillé en vue d'une résolution par la méthode des éléments finis volumiques. Deux approches classiques permettent de contourner cette difficulté. La première consiste à tronquer le domaine extérieur et rend alors possible une résolution par la méthode des éléments finis volumiques. Étant donné qu'elles approximent les problèmes de diffraction au niveau continu, les méthodes de troncature de domaine peuvent toutefois manquer de précision pour des calculs de SES et de SER. Les problèmes de diffraction harmoniques, pénétrables et inhomogènes peuvent également être résolus en couplant une formulation variationnelle volumique associée à l'objet diffractant et des équations intégrales surfaciques rattachées au domaine extérieur. Nous parlons de couplages FEM-BEM (Finite Element Method-Boundary Element Method). L'intérêt de cette approche réside dans le fait qu'elle est exacte au niveau continu. Les couplages FEM-BEM classiques sont dits forts car ils couplent la formulation variationnelle volumique et les équations intégrales surfaciques au sein d'une même formulation. Ils ne sont toutefois pas adaptés à la résolution de problèmes à haute fréquence. Pour pallier cette limitation, d'autres couplages FEM-BEM, dits faibles, ont été proposés. Ils correspondent concrètement à des algorithmes de décomposition de domaine itérant entre l'objet diffractant et le domaine extérieur. Dans cette thèse, nous introduisons de nouveaux couplages faibles FEM-BEM acoustiques et électromagnétiques basés sur des approximations de Padé récemment développées pour les opérateurs Dirichlet-to-Neumann et Magnetic-to-Electric. Le nombre d'itérations nécessaires à la résolution de ces couplages ne dépend que faiblement de la fréquence et du raffinement du maillage. Les couplages faibles FEM-BEM que nous proposons sont donc adaptés pour des calculs précis de SES et de SER à haute fréquence