
Université de Limoges

Ecole Doctorale SISMI (610)
XLim

Thesis to Obtain the title of:
Docteur de l’Université de Limoges in Computer Science
Presentation and Defence by:

Paul Germouty

September 13, 2018

Identity-based Cryptography

Directed by: Olivier Blazy and Duong Hieu Phan

Reviewers:

Sébastien Canard (Orange)
Damien Vergnaud (Sorbonne Université and Institut Uni-
versitaire de France)

Examinators:

Céline Chevalier (Université Paris II - Panthéon Assas)
Philippe Gaborit (Université de Limoges)

Acknowledgements

I would never be doing this PhD without Olivier, it was not always easy mostly
because nothing prepare you to start a PhD. Everything is new and you can
easily get lost in what you have to do. But Olivier has always been kind and
comprehensive no matter how hard were the times, he is a good person1. I hope
we will be able to work a bit together in the future. I also would like to thank
Hieu for the time he took to help me figure out how to express my ideas and the
work we have done together. Let’s not forget Philippe which played many roles
even before the start of this PhD. He puts me in relation with Olivier, helped
me figure out what I wanted to do in terms of research and directed my PhD for
my first year. He also explained to me why I should not worried about a reject
about a paper. I want to thank Céline for the work we have done together and
the help she gave me for my different presentations.

I also thanks the reviewers of my thesis Sébastien Canard and Damien Vergnaud
for their interesting comments that helped me in improving this document.

Realizing a PhD is hard. Not only because a work of research is hard but
also because it is new. Before it, the studies are quite linear, we learn things
that people already discovered, that we never truly doubt. Beginning a work
of research is about doubting. Doubting about the papers you read but mostly
doubting about yourself. This is very important, the more you doubt the more
you criticize your work and the more you improve it. At some point you have to
stop doubt your ideas and have faith in them and in you. This is also important
because having faith in what you do help to convince other researchers that
what you do is good and that it can be published and used.

This crucial point between the doubt and the faith is hard to place. It is even
harder when this is your first years of research and you don’t know how much
you are worth. The problem is that I do not trust myself that much. This is
why a lot of people were necessary to my success and I will never thanks them
enough for it: my Wife, my parents, my sister, my friends Xavier, Zoé, Mickaël,
Mathieu, Maël, Adrien, MG, Joëlle, Tam, Florent. Also sport helped me to end
this hard last year so I would like to thanks every people I met in the climbing
club Climb Up. Please forgive me if I forgot you in my acknowledgement.

1This is for me one of the best compliment

Contents

1 Introduction 4

1.1 History of Cryptography . 4

1.1.1 Antic Cryptography . 4

1.1.2 Cryptography in the Middle Ages 5

1.1.3 Modern Era . 6

1.2 High Level Definitions . 8

1.3 This Work . 9

2 Definitions And Preliminaries 12

2.1 Pairing Based Cryptography . 12

2.1.1 Diffie-Hellman Problems 12

2.1.2 Security Assumption: Pairing Groups and Matrix Diffie-
Hellman Assumption. 13

2.1.3 Security Models . 15

2.2 Parameters and Efficiency . 16

2.3 Basis Of Cryptography: Encryption 16

2.4 Digital Signatures . 19

2.4.1 Definition and Security . 19

2.5 Identity-based Encryption . 20

2.5.1 Definition and Security . 20

2.5.2 IBE’s State of The Art . 22

2.5.3 Instantiation From [BKP14] 24

2.5.4 Signature from Identity-based Encryption 25

2.5.5 Interesting Features and Properties 25

2.6 Non Interactive Zero Knowledge (NIZK) Argument 28

2.7 Commitments and Smooth Projective Hash Functions 29

2.7.1 Definitions and Security 29

1

2.7.2 Examples . 32

2.8 Oblivious Transfer . 34

2.8.1 Definition and Security . 35

2.8.2 Example . 37

3 New Featured-Identity-based Encryption and Generalization 39

3.1 Downgradable Identity-based Encryption 39

3.1.1 Downgradable Identity-based Encryption 39

3.1.2 Generalization of Existing Id-based Primitives 41

3.1.3 Instantiation and Proof of security 45

3.2 Blind IBE and Fragmented IBE 52

3.2.1 Constructing a Blind Fragmented IBKEM from an IBKEM 52

3.2.2 Pairing-Based Instantiation 55

4 Applications of Identity-based Encryption 58

4.1 Identity Based Designated Verifier Signature 58

4.1.1 Definition and Security . 59

4.1.2 A New Construction . 61

4.1.3 Moving To The Identity-based Context 64

4.2 Attribute-based Encryption from Downgradable IBE 68

4.2.1 Definitions and Security 68

4.2.2 Transformation from DIBE to ABE 69

4.2.3 Efficiency comparison for ABE 71

4.3 From IBE To Oblivious Transfer 72

4.3.1 Oblivious Transfer Formalism and Main Issues 72

4.3.2 High Level Idea of the Construction: 73

4.3.3 Generic Construction of Adaptive OT 74

5 Oblivious Transfer Generalization and New Approach 80

5.1 Oblivious Language-based Envelope 80

5.1.1 Oblivious Signature-Based Envelope 80

5.1.2 Definition of an Oblivious Language-Based Envelope . . . 82

5.1.3 Security Properties and Ideal Functionality of OLBE . . . 83

5.1.4 Generic UC-Secure Instantiation of OLBE with Adaptive
Security . 85

5.1.5 Oblivious Primitives Obtained by the Framework 90

2

5.2 Very Efficient Oblivious Transfer 91

5.2.1 Password Authenticated Key Exchange 91

5.2.2 Generic Construction of a UC-Secure OT Scheme 93

5.2.3 A Warm Up . 100

5.2.4 Very Efficient Oblivious Transfer from QA-NIZK 105

5.2.5 Applying the Framework to Obtain a UC-Secure OT Scheme106

6 Conclusion 109

3

Chapter 1

Introduction

1.1 History of Cryptography

In this section we will see that the willingness of hiding messages is very old.
For ages the systems used to hide a message needed a common knowledge be-
tween the two parties that are exchanging messages. We will also see that there
exists a kind of cryptography which does not need a common knowledge or a
common key to encrypt a message. This kind of cryptography is very young
compared to the former one. We call the former: symmetric cryptography or
secret-key cryptography, and the latter: asymmetric cryptography or public-key
cryptography. For this part we will focus only on encryption techniques e.g. the
ways to transform a text such that only few people can understand it. Then we
will try to describe the nowadays problems to understand our special needs in
cryptography.

1.1.1 Antic Cryptography

Figure 1.1: Scytale Technique
(Credits: Wikipedia)

The Scytale: one of the
most ancient example of
cryptography is the use of the
tool called the Scytale. It was
used between the 10th and
7th century BC in Greece. It
is a simple stick with a pre-
cise diameter. To encrypt a
message the sender will wrap
a piece of tissue on the stick
and write the message on it
(see Figure 1.1). To decrypt
the receiver will use his own
scytale, wrap the tissue on it and simply read the message. The security of this
scheme lies in the diameter of the scytale. The diameter of the scytale can be

4

though as a key of encryption and decryption. The problem with this technique
is that there is not enough diameters possible to align the letters. Thus an eaves-
dropper knowing the method of encryption can try all the possible alignments
of letter, and find the one giving meaning to the text. It allows to decrypt this
message but also all the other encryptions since the size of the scytale never
changes.

Figure 1.2: Caesar Cipher
(Credits: Wikipedia)

The Caesar’s Cipher: A very known
example is the one call the Caesar’s Ci-
pher. The idea is to shift the letters of
the alphabet by a precise number n (that
will be the encryption/decryption key).
It is described in Figure 1.2. To decrypt a
message the receiver will do the same op-
eration but shifting in the reverse order.
In a sense this technique has the same
problem than the previous one: it is pos-
sible to test different number for n, since there are only 26 letters in the alphabet.
This means that if the method of encryption is known, the scheme is no longer
secure. We can say that the size of universe of possible keys is too small. This
is not the only problem, for example a letter will always be encrypted in the
same letter.

1.1.2 Cryptography in the Middle Ages

Kerckhoffs principles: At the end of the 19th century, Auguste Kerckhoffs
wrote 6 principles that1 any cipher system should satisfy. They will guide the
future creators to keep in mind what is important to achieve for an encryption
scheme.

• the system must be practically, if not mathematically, indecipherable
• it should not require secrecy, and it should not be a problem if it falls into

enemy hands
• it must be possible to communicate and remember the key without using

written notes, and correspondents must be able to change or modify it at
will

• it must be applicable to telegraph communications
• it must be portable, and should not require several persons to handle or

operate
• lastly, given the circumstances in which it is to be used, the system must

be easy to use and should not be stressful to use or require its users to
know and comply with a long list of rules.

1in his opinion

5

The two last principles are less relevant in our world2 and the third is not
respected. The most important is the second one that we could reformulate
as: "the security should lie in the knowledge of the key, not in the method of
encryption". This principle excludes some kind of schemes like the 2 firsts that
we saw because of the small size of the possible "key" universe. Indeed the fact
that the size of potential keys set is small allows to guess the key and then the
security is not anymore relied on the knowledge of the key. However the next
example that does satisfy this second principle3:

Figure 1.3: Vigenere Cipher
(Credits: Wikipedia)

Vigenere Cipher: This encryption
scheme has been created at the end of the
16th century. It is based on the Caesar
Cipher with a whole word as key: to en-
crypt the sender will copy the key word
under the text has many times needed to
"cover" the whole text. Each letter of
the key word represent a number: its po-
sition in the alphabet. Each letter of the
text will be shifted in the alphabet by the
number represented by the letter under
it. For example the text PLAINTEXT
encrypt with the key word KEY (e.g. the numbers 11, 5, 25) will be ZPYS-
RROBR. The first letter has been shift by 11, the second one by 5 then 25
then again 11 etc... There is a table helping the encryption in Figure 1.3. The
decryption is made by shifting in the other way in the alphabet. This scheme
seems as secure as n simple Caesar Cipher, n being the size of the key word.
Because the adversary can cut the text in n pieces and then solve n different
Caesar cipher. However n is secret so it has to be guessed first4. In this encryp-
tion scheme it is hard to guess the key because the key can be any word. In the
case where the size of the word is equal to the size of the text, the scheme is
perfectly secure. It is called the Vernam Cipher.

1.1.3 Modern Era

The Enigma Machine: During World War 2 the German army and their
allies used a machine called Enigma. This complex machine was easy to use
because the sender only had to press the button of the letter he wants to encrypt
and the machine responds by enlightening the outputted letter. This machine
creates an electrical circuit mapping 2 different letters. The decryption phase
is done the same way as the encryption. This machine was very secure because
the electrical circuit between the letters change each time a button is pressed.

2it still apply in lightweight cryptography for example
3Note that the Vigenere Cipher is anterior to the principles of Kerckhoffs, Kerckhoffs might

have seen what in this cipher was great and learn from it the second principle
4there exist simpler method to break this scheme

6

Figure 1.4: The Enigma Machine

The key of encryption is the initial position of the scrambler and choose of the
plugboard (see Figure 1.4). Without going into too much details, this machine
has been broken due to: first the fact that a letter can not be encrypted in itself
decreasing hugely the complexity of any attacks, second the knowledge of a lot
of plaintext/ciphertext couple (mostly weather records).

The few examples we have seen are all using the same key for encryption and
decryption. This forces the two party to share something before starting ex-
changing. This is called symmetric cryptography. Finding systems where no
secret data are shared before the first exchange was a more challenging prob-
lem and find a solution with the Diffie-Hellman cryptosystem in 1976 and the
famous RSA system in 1977 [RSA78] 5. This systems belongs to the public key
cryptography.

In this Thesis we look at schemes that go a step further than a simple public
key cryptography: they do not need public key to encrypt a message to someone
we only need some general public informations and the identity of the receiver.
They are called identity-based encryption schemes which are a part of the more
general identity-based cryptography.

Today: an era of connections

The last 30 years have seen the rise of Internet. This brings us to consider the
digital security as a major problem of this decade and the next ones. This is
even more essential with the exponential growth of the Internet of things which
forces us to consider a huge number of possible devices constantly connected
to Internet. For example, the use of these devices brought DDoS (Distributed
Denial of Service) attacks to a whole new level that was not anticipated.

5Clifford Cocks created the same kind of system few years before but could not share his
work because it was classified by the British Government.

7

Many aspects of security are desirable. We will list some of them with examples
to highlight the central role of the digital security in this new world. We want
to ensure the security of the private information of the users. For example we
do not want to share our bank card number that we could have enter in an
application or an online market account. This example is obvious and so the
security of this kind of sensitive data are generally securely handle. There is
more concern to have about data that are defined less sensitive. For example
the identity of the customer, his name, his address, the name of his close family
member or customer related information that could have been harvest like the
political opinion, the sexuality . . . Those are information that may not seem
sensitive. In fact this kind of information can be used in different way that
could harm the user through harassment, discrimination . . .

We want to ensure the security of the devices/algorithms used on the wild
connected world. Indeed an encrypted message should remain secret for every
non receiver party. This is this aspect of cryptography that is considered central
for the population. Another example which the population does not seem to
care a lot about is the possibility of a device to be corrupted. Imagine a device
of the Internet of things that could be remotely controlled. This is not a big
deal if someone hack a pillow to see how good was the sleep of the owner but it
seems more a problem when the device is a car or a medical device. Those are
dramatic examples but we can have different interest in taking the control or
damaging devices. For example, if the home-thermostat are not secure enough
then a gas company could slightly change the temperature measured by the
device allowing this company to make bigger profits without anyone noticing.

These examples show how important it is to secure this new world and I hope
it somehow responds to the "I have nothing to hide" sentence that we hear too
often. So we want to secure this world but as in the real life there is always
a trade off between security and freedom. In the context of digital security
freedom will be efficiency/speed: the more we secure a simple message we send
the more we need time or power of computation to achieve it.

In this Thesis we are going to investigate a very secure aspect of the public
key cryptography and thus our solutions will have a little overcost6 compared
to less secure solutions. But we stress that our solutions are practical and can
be used with an overcost in term of computations and communications very
acceptable (with regard to the level of security achieved). Also we will talk a
lot about Identity-based cryptography which will be described in the following.
This kind of cryptography solves a lot of problems when there is a lot of users
in the system which is the case in our time.

1.2 High Level Definitions

Identity-based Encryption The concept of encryption is understood by most

6which can be in terms of computation or communication

8

of people. An identity-based encryption (IBE) is an encryption scheme where
there is no need to know a public key to encrypt for a user. Only the identity of
the recipient and some general public information (called a master public key)
need to be known by the sender. For example an identity can be a name or a
mail address (because of its uniqueness). This particular kind of encryption has
many advantages: users do not need to store a public key for each user they
might discuss with. If the keys can be hold by a trusted authority in the context
of the PKI architecture, in the identity-based context the users do not need to
trust this kind of authority any more. The strongest advantage and maybe the
most underrated is the fact that IBE schemes allows to compute ciphertexts for
a string of bits. We will develop that in this Thesis.

The disadvantages of this kind of encryptions is the difficulty to create them. It
took several years between the idea of IBE by Shamir [Sha84] and the realization
of this idea [BF01]. It needed a new and heavy tool called pairing to be achieved
and at this day there is very few other efficient way to create IBE.

Note that there exists many kind of Identity-based cryptography like Identity-
based Signature that we will be used in this Thesis.

Oblivious Transfer (OT) In our research about Identity-based Encryption we
will encounter and then study protocols called Oblivious Transfer. An Oblivious
Transfer is an interactive way to exchange files in a database with a very high
degree of secrecy. In fact a user will be able to get a file from a database
without this database knowing which file has been requested. On top of that
the database does not want the user to have access to a file he does not query.
In the context of the security of protocols we need to be very careful. If the
protocol is secure when used as it should be used it can be unsecure when used
dishonestly. The UC model [Can01] is the security model that ensure that the
security remains the same in both context. Highly secure Oblivious Transfer
will be proved secure in the UC model.

1.3 This Work

What was the idea behind this Thesis? Most of the things existing in the
world are designed or used for a special purpose. However sometimes people
voluntary or involuntary find a new use to this objects. This is not a new thing,
for example the flint was used by the first kind of Homo 1.6 millions years ago to
cut meat or leather. But approximatively 1.4 millions year after they found out
that this same flint could be used to create fire. Once they learned that this new
application to the flint was possible, the deep knowledge about the use of a flint
helped them to quickly master the creation of fire. This example highlights the
fact that using known concepts or tools to create new ones is sometimes a good
starting point. Indeed it is easier to work in a familiar environment. Moreover
the idea of using anything in a strange way and make it work and sometimes
efficient is itself very funny.

9

This was in fact the true idea behind this Thesis: "How far can we go with" and
we focused on the case of "How far can we go with Identity-based Encryption".
We got a bit lost in the way when studying Oblivious Transfer itself but it was
also an interesting part of the journey. Obviously this Thesis does not set the
limits of the use of IBE but knowing where we can go is knowing that the limits
are further. Roughly speaking: How far can we go? Well the answer is beyond
what we have done here.

What do we achieve in this Thesis?

Downgradable Identity-based Encryption (DIBE) We manage to gener-
alize a whole class of different identity-based encryption schemes. We called
this new scheme Downgradable Identity-based Encryption. This is an Identity-
based Encryption that enables key delegation with some conditions: a user with
the identity id can recover a user secret key of any identity ĩd where if ĩdi = 1
then id = 1, we note ĩd � id. This condition gives some kind of power to bits
equal to 1 compared to bits equal to 0. We find out that this special type of
hierarchy is present in Attribute-based scheme. Indeed in an Attribute-based
Encryption a user is able to decrypt a message if he verifies a policy made of
attributes. We can draw a parallel between the role of an attribute and the role
of a 1 in an identity, if each attribute is represented by a bit in an identity string
then to encrypt for the conjunction of several attribute, we only need to encrypt
for the identity made of 0’s and having 1’s at the position of these attributes.
This is our starting point for the Section 4.2. We also detail the transforma-
tions from DIBE to Hierarchical IBE, wicked IBE and wildcarded IBE, and an
instantiation of DIBE derived from the Hierarchical Identity-based Encryption
from [BKP14] in Section 3.1. This work is still in the process of submission.

Identity-based Designated Verifier Signature We use Hierarchical IBE to
construct a special type of signature called Identity-based Designated Verifier
Signature. In fact we first create a secure and efficient Designated Verifier Sig-
nature scheme using implicit decommitment, namely Smooth Projective Hash
Functions, to verify a signature without being able to reveal the signer. Then
we describe a way to transform it into an Identity-based scheme. This work has
been published in the article [BCGJ17] and is detailed in Section 4.1

Oblivious Transfer from Blind IBE First we find a way to securely and
efficiently transform any IBE into a blind IBE described in Section 3.2, in this
context a user can ask for any secret key without the authority knowing which
identity is the target of this request. This transformation is done using Smooth
Projective Hash Functions allowing user to commit a request that will be im-
plicitly decommit to answer the request. This technique is even more efficient
with affine IBE. Using this new efficient primitive we are able to instantiate an
adaptive UC-secure Oblivious Transfer: first the database is encrypted with an
IBE, each line is encrypted for the identity equal to the bit string corresponding
to the number of the line we are looking at. Then it is sent to the user and

10

IBEDNF-ABE

Blind IBE

Ad. OT Log Ad OT

SPHF

IDDVS DVS

Signature
Downgradable

fragmented

Figure 1.5: Relations Between Primitives in this thesis

then the user asks for user secret key as for the Blind IBE scheme. There are
some tricks to achieve the UC-security and decrease communication costs, it is
described in section 4.3. This work has been published in the article [BCG16].

Oblivious Transfer Generalization We are able to generalize different schemes
such as Oblivious Transfer and Oblivious Signature-based Envelope into the con-
cept of Oblivious Language-based Envelope and even give a general UC-secure
instantiation. This new protocol allows a user to recover one or several infor-
mations if it owns a word in one or several languages. Depending on the type of
language this scheme can instantiate different protocols. Our instantiation also
makes use of Smooth Projective Hash Functions. This work has been published
in [BCG16].

Very Efficient Oblivious Transfer from Password Authenticated Key
Exchange During the study of Oblivious Transfer we find out that it was pos-
sible to instantiate it using Password Authenticated Key Exchange. We apply
and optimize this transformation to multiple PAKE and the one from [JR15]
gave the most efficient UC-secure Oblivious Transfer. This work is described in
Section 5.2.3 and has been published in [BCG17].

Outline In the second chapter we will first describe the different primitives/tools
that we will need for our work. Each time we will define the notion, define the
security requirement and give examples. The next chapter is about the work on
the Identity-based Primitives as a stand alone. After that we will use this work
and apply it. The last chapter is about Oblivious Transfer: generalizations on
one side and efficient instantiation from PAKE on the other side.

We summarize all the link between primitives that we found in this thesis in
Figure 1.5.

11

Chapter 2

Definitions And Preliminaries

2.1 Pairing Based Cryptography

2.1.1 Diffie-Hellman Problems

In provable cryptography, the security relies on supposedly hard assumptions.
In other words we say that a scheme is secure if the underlying hard assumption
holds. There are many candidates of hard assumptions, a notable one is the
hardness of the discrete logarithm (DL) problem: let G be a group of order q
and g, h two elements of this group. The discrete logarithm of h in basis g is
the element a ∈ Zq such that ga = h1. The discrete logarithm problem is to
recover a knowing g and h.

Another notable assumption is the Computational Diffie Hellman assumption
(CDH) [DH76]. Given a group G and 3 elements of this group: (g, ga, gb). It
is hard to compute gab. The decisional version of this assumption states that
it is hard to distinguish gab from a random element. An adversary solving the
computational problem can trivially solve the decisional one. More formally:

Definition 1 (Decisional Diffie-Hellman Assumptions DDH). We say that the
Decisional Diffie-Hellman Assumption holds relative to (G, g) a group and its
generators. if for all Probabilistic Polynomial Time (PPT) adversaries D,

AdvDk,GGen(D) := |Pr[D(G, g
a, gb, gab = 1]− Pr[D(G, ga, gb, h) = 1]| = negl(λ),

where the probability is taken over the group generation algorithm, (a, b)
$← Zp

2,

h
$← G.

Solving the discrete logarithm problem allows to solve the Diffie-Hellman (DH)
assumptions thus DH assumptions is weaker than the DL one. In other words
a scheme secure under the DL assumption is also secure under the DH assump-
tion. In this thesis we will use a lot of variants of the decisional Diffie-Hellman
assumption such as the matrix Diffie-Hellman or the bilinear DH (BDH).

1if it exists, it is sure if g is a generator of G
2Zp is the group Z/pZ with p a prime number

12

Before defining these variants we first recall the notion of pairings. Pairings are
one of the most powerful tool used in modern cryptography. Roughly speaking,
it allows to compute the Diffie Hellman tuple but with fourth element in another
group.

Definition 2 (Pairing). A pairing e is a bilinear map from G1 × G2 to GT

(where Gi, i ∈ {1, 2, T} are groups) and must be:

• Bilinear: e(ga1 , g
b
2) = gabT with gT = e(g1, g2) and for all (g1, g2) ∈ G1×G2

and a, b ∈ Z

• Non degenerate: the image of e should not be reduce to {1GT
}. If G1 and

G2 are prime order group and g1, g2 are generators then it means that:
e(g1, g2) is a generator of GT .

• Computable: it should exist an polynomial time algorithm able to compute
the pairing for any (g1, g2) ∈ G1 ×G2.

2.1.2 Security Assumption: Pairing Groups and Matrix Diffie-
Hellman Assumption.

For simplicity when we will use different groups, we will use implicit represen-
tation of group elements as introduced in [EHK+13]. For s ∈ {1, 2, T} and
a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation of a in Gs. Note
that from [a]s ∈ Gs it is generally hard to compute the value a (this correspond
to solving the discrete logarithm problem in Gs). Moreover, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute
[ax]s ∈ Gs. Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input 1K returns a description G = (p,G1,G2,GT , e, g1, g2) of asymmetric
pairing groups where G1, G2, GT are cyclic groups of order p for a K-bit prime
p, g1 and g2 are generators of G1 and G2, respectively, and e a pairing. Define
gT := e(g1, g2), which is a generator in GT .

Definition 3 (Bilinear Diffie-Hellman problem (BDH)). The decisional bilinear
Diffie-Hellman problem is to distinguish two distributions:

([a], [b]1, [c]2, [abc]T) and ([a]1, [b]1, [c]2, h) where G ← GGen(1K) and h
$← GT .

More generally, for a matrix A = (aij) ∈ Zn×m
p we define [A]s as the implicit

representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×m

s

For a, b ∈ Zk
p , e([a]1, [b]2) := [a⊤b]T ∈ GT . We define the matrix Diffie-Hellman

(MDDH) assumption [EHK+13].

13

Definition 4 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribu-

tion an algorithm that outputs matrices in Z
(k+1)×k
p of full rank k in polynomial

time.

Without loss of generality, we assume the first k rows of A
$← Dk

3 form an
invertible matrix, we denote this matrix A, while the last line is denoted A.
The Dk-Matrix Diffie-Hellman problem is to distinguish the two distributions
([A], [Aw]) and ([A], [u]) where A

$← Dk, w
$← Zk

p and u
$← Zk+1

p . Formally:

Definition 5 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be
a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Abw]s) = 1]− Pr[D(G, [A]s, [bu]s) = 1]| = negl(λ),

where the probability is taken over G $← GGen(1λ), A
$← Dk, bw

$← Zk
p, bu

$←

Zk+1
p .

For each k ≥ 1, [EHK+13] specifies distributions Lk, Uk, . . . such that the
corresponding Dk-MDDH assumption is the k-Linear assumption, the k-uniform
and others. All assumptions are generically secure in bilinear groups and form
a hierarchy of increasingly weaker assumptions. For example the distributions
are for k = 2, where a1, . . . , a6

$← Zp.

L2 : A =

a1 0
0 a2
1 1

 U2 : A =

a1 a2
a3 a4
a5 a6

 .

It was also shown in [EHK+13] that Uk-MDDH is implied by all other Dk-MDDH

assumptions.

Lemma 1 (Random self reducibility [EHK+13]). For any matrix distribution
Dk, Dk-MDDH is random self-reducible. In particular, for any m ≥ 1 and for
all PPT adversaries D and D′,

AdvDk,GGen(D) +
1

q−1 ≥ Advm
Dk,GGen

(D′)

where Advm
Dk,GGen

(D′) := Pr[D′(G, [A], [AW]) ⇒ 1] − Pr[D′(G, [A], [U]) ⇒ 1],

with G ← GGen(1λ), A
$← Dk,W

$← Zk×m
p ,U

$← Z
(k+1)×m
p .

Remark: It should be noted that L1,L2 are respectively named semi-external
Diffie Hellman4 (SXDH) and Decision Linear (DLin) [EHK+13] assumptions. L1

is generated using a scalar as matrix.

3the notation
$
← means that the left element is chosen randomly in the set at the right of

the arrow
4in other terms this assumption state that DH holds in both groups G1 and G2

14

2.1.3 Security Models

When rigorously defining security of protocols we have different ways to link the
security and the hardness assumption. We will here describe the most common
ways.

Random Oracle Model In the random oracle model (ROM), we assume that
a public accessible algorithm (often a hash function) can be modelled as a ran-
dom oracle. It means that any adversary cannot distinguish the output of the
algorithm from a distribution uniformly chosen at random element of the output
domain. In [CCG+94] they explained that there exists no true random oracle.
Moreover when instantiated some signature or encryption scheme which where
secure in the ROM, it leads to truly insecure scheme. The ROM can gives a
reasonable level of security. However the high level research tend to avoid it.

Standard Model In opposition to random oracle model, the desirable model of
security is the standard model. In the standard model the security is only based
on the complexity assumptions. It means that the adversary is only limited by
the time and computational power available.

Universally Composable (UC) Framework. The goal of the UC frame-
work [Can01] is to ensure that UC-secure protocols will continue to behave in
the ideal way even if executed in a concurrent way in arbitrary environments.
It is a simulation-based model, relying on the indistinguishability between the
real world and the ideal world. In the ideal world, the security is provided by an
ideal functionality F , capturing all the properties required for the protocol and
all the means of the adversary. In order to prove that a protocol Π emulates F ,
one has to construct, for any polynomial time adversary A (which controls the
communication between the players), a simulator S such that no polynomial
time environment Z can distinguish between the real world (with the real play-
ers interacting with themselves and A and executing the protocol π) and the
ideal world (with dummy players interacting with S and F) with a significant
advantage. The adversary can be either adaptive, i.e. allowed to corrupt users
whenever it likes to, or static, i.e. required to choose which users to corrupt
prior to the execution of the session sid of the protocol. After corrupting a
player, A has complete access to the internal state and private values of the
player, takes its entire control, and plays on its behalf.

Simple UC Framework. Canetti, Cohen and Lindell formalized a simpler
variant in [CCL15], that we use here. This simplifies the description of the
functionalities for the following reasons (in a nutshell): All channels are au-
tomatically assumed to be authenticated; There is no need for public delayed
outputs (waiting for the adversary before delivering a message to a party), nei-
ther for an explicit description of the corruptions.

Advantage A common notion when discussing about security games and ad-
versaries playing these games is the advantage. This is a simple notion that we

15

describe in the following definition.

Definition 6. The advantage of an adversary A in winning the experiment Exp
is the probability that A wins the experiment minus 1/2.

2.2 Parameters and Efficiency

When there is an efficiency comparison between different schemes/protocols we
often compare them in terms of communication cost. This communication cost
is expressed in number of group elements.

We have to be careful with this approach, indeed the structure/properties of
the groups involved change a group element’s size of storage. The first thing
to take into account is the cardinal of the group, there is a ratio superior to
12 between the size of an element in a prime order group and an element in
a composite order group (according to the National Institute of Standards and
Technology [Gui13]).

Computational time is also a very important parameter to describe the efficiency.
Once again, the type of group used imply different time performance: for the
same 126 bit security, a pairing computation takes 254 more time in a composite
order group than in a prime order group and exponentiation is more than 300
time slower. This is quite problematic because pairing computations already
take a lot of time. All these information can be found in [EMJ17].

The size of group elements depends on the security we want but also on the
security reduction from the hard assumption we have. Thus the more direct is
the reduction the less group elements’ size increases.

2.3 Basis Of Cryptography: Encryption

We will formally define what is an encryption5 scheme and what kind of security
requirement it must follow.

Definition: an encryption scheme E is described through four PPT algorithms

(Setup,KeyGen,Encrypt,Decrypt):

• Setup(1K), where K is the security parameter, generates the global param-
eters param of the scheme;

• KeyGen(param) outputs a pair of keys, a (public) encryption key ek and a
(private) decryption key dk;

• Encrypt(ek,M ; ρ) outputs a ciphertext C, on a plaintext M , under the
encryption key ek, using the randomness ρ;

• Decrypt(dk, C) outputs M , encrypted in the ciphertext C or ⊥.

5Here we obviously define a public key encryption scheme

16

Procedure Initialize:

param← Setup(1K)
(ek, dk)← KeyGen(param)
Return ek

Procedure Decrypt(C):

Return Decrypt(dk, C)
CT ← C

Procedure Encrypt(ek,Mb):
(C∗)← Encrypt(ek,Mb)
Return C∗

Procedure Finalize(β):

If C∗ ∈ CT return 0
Else return b == β

Figure 2.1: IND-CCA-security game

Security: such encryption scheme is required to have the following security
properties:

• Correctness : For every pair of keys (ek, dk) generated by KeyGen, every
messages M , and every random ρ, we should have
Decrypt(dk,Encrypt(ek,M ; ρ)) = M .

• Indistinguishability under Adaptive Chosen Ciphertext Attack IND-CCA [NY90,
RS92]:
We say that the encryption scheme is IND-CCA secure if the advantage6 of
an adversary in winning IND-CCA-security game Figure 2.1 is negligible.
Description of the game in Figure 2.1: a challencger C will create a game
for the adversary A.

– Procedure Initialize: C will honestly compute the parameters and
the pair of keys and return ek to A.

– Procedure Decrypt(C): A can request at any time decryption of
ciphertexts, the ciphertext decrypted are stored (if the adversary has
not access to the procedure Decrypt the security is called IND-CPA
(Indistinguishability under Chosen Plaintext Ciphertext Attack)).

– Procedure Encrypt(ek,Mb): A will submit two messages M0 and
M1, in game b (∈ {0, 1}) the challenger encrypt the message Mb and
return the ciphertext to A.

– Procedure Finalize(β): A submit a bit β and win if it never decrypt
the ciphertext C∗ and if Mβ is encrypted in C∗.

Examples: One of the most simple example is the ElGamal encryption [ElG84]
which is IND-CPA secure under DDH assumption. It is described in Figure 2.2.

The linear encryption described in Figure 2.3 has been introduced by Boneh
Boyen and Shacham in [BBS04] is IND-CPA-secure under DLin.

In the following of the thesis we will need another encryption called the Cramer-
Shoup encryption scheme [CS98] which is an IND-CCA version of the ElGamal
Encryption. We present it here as a labeled public-key encryption scheme in

6see definition 6

17

• Setup(1K): Generates a group G of prime order p, with a generator g,
param = (G, p, g).

• KeyGen(param): Picks h
$← G,dk = x

$← Zp, and sets ek = gx.

• Encrypt(ek,M ∈ G; r): Outputs C = (M · ekr, gr)

• Decrypt(dk, C): Outputs C1/(C
dk
2)

Figure 2.2: ElGamal Encryption

• Setup(1K): generates a group G of prime order p, with a generator g,
param = (G, p, g).

• KeyGen(param): dk = (y1, y3)
$← Z2

p,
ek = (ek1, ek2, ek3) := (gy1 , g, gy3)

• Encrypt(ek,M): (r1, r2)
$← Z2

p,

C := (ekr11 , ekr22 , ekr1+r2
3 ·M)

• Decrypt(dk, C): outputs C3/(C
y3/y1
1 Cy32)

Figure 2.3: Linear Encryption

Figure 2.4, the classical version is done with the label space set to ∅7.The security
of the scheme is proven under the DDH assumption and the hash function used
is a Universal One-Way Hash Function. A generalization of this encryption to
the k −MDDH assumption can be found in figure 2.5.

7A labeled public-key encryption scheme is a set of public-key encryption schemes. The
choose of the label make the encryption scheme unique. Two labels gives two different en-
cryption schemes

• Setup(1K): generates a group G of order p, param = (G, p).

• KeyGen(param): generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p,

and sets, c = gx1

1 gx2

2 , d = gy11 gy22 , and h = gz1 Chooses a Uni-
versal One-Way hash function HK in a hash family H (see def 14)
ek = (g1, g2, c, d, h,HK).

• Encrypt(ℓ, ek,M ∈ G; r): Outputs C = (ℓ,u = (gr1, g
r
2), e = M · hr, v =

(cdξ)r), where v is computed afterwards with ξ = HK(ℓ,u, e).

• Decrypt(ℓ, dk, C): Computes ξ = HK(ℓ,u, e) and checks whether ux1+ξy1
1 ·

ux2+ξy2
2

?= v. If True computes M = e/(uz1) and outputs M . Otherwise,
outputs ⊥.

Figure 2.4: Cramer Shoup Encryption

18

• Setup(1K): generates groups G1 of order p with generator g1, param =
(G, p).

• KeyGen(K): Picks E
$← Dk, u, v

$← Zk+1
p , sets ek =

([E]1, [u
⊤E]1, [v

⊤E]1), dk = (E · E−1, u, v) to be the public encryption
key, where HK is a random collision-resistant hash function from H a.

• Encrypt(ek,M ∈ G1, ℓ;µ) If M = gm1 , C = (e = ek1µ +

[
0
m

]

1

, w =

[(ek2 + θpk3)µ]1). where θ = HK(ℓ, e).

• Decrypt(ℓ, dk, C) If [w]1
?= [(u⊤ + θv⊤)e]1, then outputs M = ske+ e.

Otherwise output ⊥.

aLike Cramer-Shoup one could rely on an universal one-way hash function family instead
see def 14

Figure 2.5: Cramer Shoup Encryption under k −MDDH

2.4 Digital Signatures

2.4.1 Definition and Security

A digital signature scheme S [DH76,GMR88] allows a signer to produce a ver-
ifiable proof that proves the authenticity of a message. It is described through
four algorithms:

Definition 7 (Digital Signature Scheme). σ = (Setup,KeyGen, Sign,Verify):

• Setup(1K) where K is the security parameter, generates the global parame-
ters param of the scheme, for example the message space;

• KeyGen(param), outputs a pair of (sk, vk), where sk is the (secret) signing
key, and vk is the (public) verification key;

• Sign(sk,M ;µ), outputs a signature σ, on a message M , under the signing
key sk, and some randomness µ;

• Verify(vk,M, σ) checks the validity of the signature σ with respect to the
message M and the verification key vk. And so outputs a bit.

In the following we will expect at least two properties for signatures:

• Correctness : For every pair (vk, sk) generated by KeyGen, for every mes-
sage M , and for all randomness µ, we have Verify(vk,M, Sign(sk,M ;µ)) =
1.

19

• Existential Unforgeability under Chosen
Message Attacks [GMR88] (EUF− CMA).
We say that the signature scheme is
EUF− CMA secure if the advantage of an
adversary in winning ExpeufS,A is negligible.
The oracle OSign sign a message and store
any message queried in SM.

ExpeufS,A(K)

1. param← Setup(1K)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk,OSign(sk, ·))
4. b← Verify(vk,m∗, σ∗)
5. If m∗ ∈ SM or b 6= 1 output 0
6. Else output 1

The probability of success against this game is denoted by

SucceufS,A(K) = Pr[ExpeufS,A(K) = 1], SucceufS (K, t) = max
A≤t

SucceufS,A(K).

There is an interesting primitive close to signature but in a symmetrical cryp-
tography setup, this is the message authentication code (MAC)8.

Definition 8 (Message Authentication Code). A MAC is described through three
algorithms (GenMAC,Tag,Ver):

• GenMAC(param): Returns skMAC.
• Tag(skMAC,m): Returns a tag τ on a message m from the message space
M.

• Ver(skMAC,m, τ): Returns a verification bit b.

The MAC is correct if for any correctly computed tag τ the verification bit out-
putted by Ver is equal to 1. For the security we define is unforgeability under
Chosen Message Attacks as for signature schemes.

2.5 Identity-based Encryption

The most studied Identity-based primitive is by far the Identity-based Encryp-
tion (IBE). In this part we will describe formally what is an IBE and what
kind of security is required for this type of scheme. Further we will see how
the building of such schemes has changed through time, then we will see a very
recent example which will be a basis of our work. Finally we will talk about
some features that will be very important to use IBE in unexpected ways.

2.5.1 Definition and Security

Identity-based encryption was first introduced by Shamir in [Sha84] who was
expecting an encryption scheme where no public key will be needed for sending
a message to a precise user, defined by his identity. Thus any user wanting to
send a private message to a user only needs this user’s identity and a master
public key. It took 17 years for the cryptographic community to find a way to

8We will use them in the proof of security of the DIBKEM in section 3.1

20

Procedure Initialize:

(mpk,msk)
$← Setup(K)

Return mpk

Procedure USKGen(id):

QID ← QID ∪ {id}

Return usk[id]
$← USKGen(msk, id)

Procedure Enc(id∗):
// one query

(K∗,C∗)
$← Enc(mpk, id∗)

K∗ $← K;C∗ $← CS

Return (K∗,C∗)
Procedure Finalize(β):

Return (id∗ 6∈ QID) ∧ β

Figure 2.6: PR-ID-CPA-security: Security Games PR-ID-CPAreal and
PR-ID-CPArand (boxed).

realize this idea. The first instantiation was proposed in [BF01] by Boneh and
Franklin.

In this thesis we will consider the slightly different concept of identity-based
key encapsulation mechanism (IBKEM). In an IBKEM the sender does not
choose a message to encrypt. The encryption algorithm will output a key and
a ciphertext. The recipient will recover the key by decrypting the ciphertext.

Formally an IBKEM scheme IBKEM consists of four algorithms IBKEM =
(Setup,USKGen,Enc,Dec). Every IBKEM can be transformed into an ID-based
encryption scheme IBE using a (one-time secure) symmetric cipher.

Definition 9 (Identity-based Key Encapsulation Scheme). An identity-based
key encapsulation scheme IBKEM consists of four PPT algorithms IBKEM =
(Setup,USKGen,Enc,Dec) with the following properties.

• Setup(1K): from the security parameter K, returns the (master) public/secret
key (mpk,msk). We assume that mpk implicitly defines an identity space
ID, a key space K, and ciphertext space CS.

• USKGen(msk, id): returns the user secret-key usk[id] for identity id ∈ ID.
• Enc(mpk, id): returns a symmetric key K ∈ K together with a ciphertext
C ∈ CS with respect to identity id.

• Dec(usk[id], id,C): returns the decapsulated key K ∈ K or the reject sym-
bol ⊥.

For perfect correctness we require that for all K ∈ N, all pairs (mpk,msk) gener-
ated by Setup(K), all identities id ∈ ID, all usk[id] generated by USKGen(msk, id)
and all (K,C) output by Enc(mpk, id): Pr[Dec(usk[id], id,C) = K] = 1.

The security requirements for an IBKEM we consider here are indistinguishabil-
ity and anonymity against chosen plaintext and identity attacks we define pseu-
dorandom ciphertexts against chosen plaintext and identity attacks (PR-ID-CPA)
which means that challenge key and ciphertext are both pseudorandom. We de-
fine PR-ID-CPA-security of IBKEM formally via the games given in Figure 2.6.

21

Definition 10 (PR-ID-CPA Security). An ID-based key encapsulation scheme
IBKEM is PR-ID-CPA-secure if for all PPT A , the following advantage is neg-
ligible:

Adv
pr-id-cpa
IBKEM (A) := |Pr[PR-ID-CPAA

real ⇒ 1]− Pr[PR-ID-CPAA
rand ⇒ 1]|.

There are many different definitions of security for IBE each one corresponding
to different power given to the adversary. Of course the more power we give to
the adversary in the security definition the more secure is our scheme.

An interesting definition of security, is the selective-ID security definition. The
only difference with the one from Figure 2.6 is that the challenge identity has to
be output by the adversary before the procedure USKGen(id). This is a weaker
security definition. It may looks like a detail but in fact there are a lot of
problems when moving from selective-ID security to full security. For example
in [BB04] the authors state that a selectively secure IBE is fully secure as soon
as we can have a collision resistant hash function9 from the identity space to
bits string of size d ∈ Z. But the reduction is not tight and introduces a factor
lose 2d. As well as in the case of the scheme [BBG05] using the techniques of
Waters [Wat05], the authors have to add a collision resistant hash function and
they loss an exponential factor in the security parameters (here 2nd where n is
the hierarchy depth).

Remark 1. For simplicity when talking about IBKEM and IBE we will often
only refer to IBE. This is not such a problem since it is easy to have one from
the other:

• IBE to IBKEM: choose K
$← K and set the output of EncIBKEM(mpk, id)

to (C,K) = (EncIBE(mpk, id,K),K).

• IBKEM to IBE: set the output of EncIBE(mpk, id,M) to (M ⊕K,C) where
(C,K) = EncIBKEM(mpk, id). Also set the output of DecIBE to (M ⊕ K) ⊕
DecIBKEM(usk[id], id,C).

The other algorithms stay the same.

2.5.2 IBE’s State of The Art

In this section we will describe some IBE schemes and see what has changed
during these years of research on IBE. We will describe two historical schemes
and talk about the main other ones without describing them completely. As said
before the first IBE scheme was the one from Boneh and Franklin in [BF01].
Their scheme is described in Figure 2.7

This IBE is secure in the random oracle model, both hash functions are modelled
as random oracles. As you can see this work is based on pairings. It has to be

9see definition 14

22

Setup(K)

(p,G,GT , e, g)
$← GGens(1K)

Choose H (resp. HT) two hash functions
from {0, 1}∗ to G (resp.M)

s
$← Z∗

p, h← gs

Return
(mpk = (G,GT , H,HT , e, h),
msk = s)

USKGen(msk, id)

Return usk[id] = H(id)s

Enc(mpk, id,M ∈M)

Return C = (gr,M ⊕HT (e(H(id), h)r))

Dec(usk[id], id,C)

Set C as (C1,C2)
Return M = C2 ⊕HT (e(usk[id],C1))

Figure 2.7: Boneh Franklin IBE

noticed that in the same time Cocks10 in [Coc01] created an IBE based on
quadratic residue.

The first IBE scheme secure in the standard model was the one from Boneh
and Boyen [BB04]. It is secure under the bilinear Diffie-Hellman problem. We
describe it in Figure 2.8.

Setup(K)

(p,G,GT , e, g1)
$← GGens(1

K)

g2
$← G, U = {ui,j}i∈{1,n},j∈{0,1}

$← G2n

Choose s
$← Z∗

p, h ← gs1 and k a hash
function key in the appropriate key space
Return
(mpk = (G,GT , e, U, k, g1, h, g2),msk =
gs2)

USKGen(msk, id)

Compute a = (a1, ..., an) = HK(id) ∈
{0, 1}n

Choose (t1, ..., tn) ∈ Zn
p

Return
usk[id] = (gs2 ·

∏n
i=1 u

ti
i,ai

, gt11 , ..., gtn1)

Enc(mpk, id,M ∈M)

Compute a = (a1, ..., an) = HK(id) ∈
{0, 1}n

Choose r
$← Zp

Return
C = (e(h, g2)

r ·M, gr, ur
1,a1

, ..., ur
n,an

)

Dec(usk[id], id,C)

Set C as (A,B,C1, ..., Cn)
And usk[id] as (usk0, ..., uskn)

Return M = A ·
∏

n
j=1

e(Cj ,uskj)

e(B,usk0)

Figure 2.8: Boneh Boyen IBE

This IBE is secure in the standard model and under a classical assumption
(BDH). However this scheme is unpractical because of the size of the ciphertext:
it is logarithmic in the number of identities. The first practical scheme by

10Once again Clifford Cocks could not share his work because it was classified by the British
government

23

Waters in [Wat05] brings a new construction which is efficient and fully secure
in the standard model under a classical assumption. The only drawback was
the size of the public key which was linear in the security parameter. In [Wat09]
Waters fixes this problem with new techniques in the proof called Dual system
encryption. More than bringing a new scheme of IBE the dual system encryption
will allow a lot of new works in IBE and Attribute-based Encryption.

2.5.3 Instantiation From [BKP14]

Through this thesis we needed an efficient IBE scheme with particular properties
(in particular without hash functions). The natural choice was to use the one
from [BKP14]. It has many advantages such as the tightness security11 to a
classical assumption and the fact that the group order is prime. This scheme
is following the steps of the one from [Wat09] and use Dual system encryption
techniques to prove its security. Note that it is actually an IBKEM scheme.

Gen(K):

A
$← Z2×1

p

For i = 1, . . . , 2ℓ :
Yi

$← Z2
p;Zi = Y ⊤

i ·A ∈ Zp

y′0
$← Z2

p; z
′
0 = y′0

⊤ ·A ∈ Zp

mpk := (G, [A]1, ([Zi]1)0≤i≤ℓ, [z
′
0]1)

msk := (B, (Yi)0≤i≤ℓ, y
′
0)

Return (mpk,msk)

USKGen(msk, id ∈ ID):

t
$← Zp

v =
∑ℓ

i=1 idiYit +y′0 ∈ Z2
p

For i ∈ {0, .., ℓ− 1}:
usk[id] := ([t]2, [v]2) ∈ G2 ×G2

2

Return (usk[id])

Enc(mpk, id):

r
$← Zp; c0 = Ar ∈ Z2

p

c1 = (
∑2ℓ

i=1 fi(id1)Zi) · r ∈ Zp

K = z′0 · r ∈ Zp.
Return K = [K]T and C = ([c0]1, [c1]1)

Dec(usk[id], id,C):

Parse usk[id] = ([t]2, [v]2)
Parse C = ([c0]1, [c1]1)
K = e([c0]1, [v]2) · e([c1]1, [t]2)

−1

Return K ∈ GT

Figure 2.9: Tight IBKEM under SXDH from [BKP14]

Today there is still no practical IBE without pairing. There are some at-
tempt, for example an IBE using garbled circuit [DG17], learning with error
problem [GPV08,CHKP10,ABB10] or code-based cryptography [GHPT17] but
nothing as practical as pairings. Still it could be very interesting to construct
efficient IBE without pairing because pairing computations take time and need
an important amount of power of computing. For example in light weight cryp-
tography the use of pairing computations is avoided.

11This means that the reduction lost is minimal, to achieve the same level of security we
will be able to have shorter parameters

24

• Wat.KeyGen(param): (pk1, sk1) = (gz, hz), z
$← Zp

• Wat.Sign(sk1,M): chooses s ∈ Zp and computes σ := (sk1F(M)s, gs).
Please note that σ is composed of two parts (σ1, σ2).

• Wat.Verify(pk1,M, σ): checks e(g, σ1) = e(σ2,F(M)) · e(pk1, h),
F(M) := u0

∏
i∈J1,kK u

Mi

i , with M = (M1, . . . ,Mk) and Mi ∈ {0, 1}

Figure 2.10: Waters Signature

2.5.4 Signature from Identity-based Encryption

As described in [BF01] it is possible to produce a signature scheme from an IBE
one. They proved that the security of the signature relies on the security of the
IBE scheme involved. The idea is quite simple: the signer will play the role of
the authority of the IBE. Thus the public key of the signature scheme will be
all public parameters of the IBE. To sign a message M the signer will produce
a private key for the identity: M . The verification is easily done by testing
whether or not this element is the private key of M (by encrypting a dummy
message and decrypting it).

An interesting example of this kind of signature is the one from Waters in
[Wat05] coming from the IBE of the same paper. It is secure under the decisional
bilinear Diffie-Hellman problem. For the Waters function F , we assume the
existence of independent group generators ui that define the function F(M) :=
u0

∏
i∈J1,kK u

Mi

i , with M = (M1, . . . ,Mk) and Mi ∈ {0, 1}.

This signature verification makes use of pairing computations. Thus this scheme
is not very efficient, but since the verification is made with pairing computations
it can be used along other schemes using pairings.This will allow implicit veri-
fications (see Oblivious Signature-based Envelope Section 5.1 or Figure 2.13).

2.5.5 Interesting Features and Properties

Hierarchical Identity-based Encryption: Identities can have a special form,
this allow to create some kind of hierarchy between them. That is enough
to justify the construction of hierarchical IBE (HIBE) which were introduced
in [GS02]. We often represent HIBE with a binary tree, each user represents
a node in this tree. In these primitives a user possesses a secret key and is
able to construct/delegate a new key for every node/identities under him. Once
again HIBE can be used as an actual system of encryption with hierarchy or
sometimes it can be used in different ways (see Section 3). We recall a formal
definition of HIBE in the term of HIBKEM.

Definition 11. An HIBKEM HIBKEM is described through five algorithm (Gen,USKGen,USKDel,Enc,Dec

• Gen(K) returns the (master) public/secret key and delegation key (pk, sk, dk).

25

• USKGen(sk, id) returns a secret key usk[id] and a delegation value udk[id].

• USKDel(dk, usk[id], udk[id], id, id′) returns a user secret key usk[id|id′].

• Enc(pk, id) returns a symmetric key K together with a ciphertext C.

• Dec(usk[id], id,C) returns the decapsulated key K or the reject symbol ⊥.

In our HIBKEM definition we make the delegation key dk and the user delegation
key udk[id] explicit to make our constructions more readable.It will help us for
redefining the PR-CMA security we are expecting from an HIBKEM. Indeed to
prevent trivial win from the adversary in this game we will not allow a win from
the adversary if he requested a user secret key which is a prefix of the challenge
identity.

The HIBE from [BKP14] will be our favourite instantiation to use HIBE as
a tool. Indeed it is a practical scheme with tight security reduction under a
classical assumption namely k-MDDH. We describe this scheme in Figure 2.11.
Of course these scheme comes from the IBE from the same paper.

Blind IBE A blind IBE is an IBE where the user secret key can be queried
without the authority knowing which identity is related to the key. This might
seems awkward to construct such primitive and hard to find applications to this,
but it has been created in a precise purpose that we will explain in section 4.3.

We continue to follow the KEM formalism by adapting the definition of a Blind
IBE scheme given in [GH07] to this setting.

Definition 12 (Blind Identity-Based Key Encapsulation Scheme). A Blind
Identity-Based Key Encapsulation scheme BlindIBKEM consists of four PPT
algorithms

(Setup,BlindUSKGen,Enc,Dec) with the following properties:

• Setup, Enc and Dec are defined as for a traditional IBKEM scheme.
• BlindUSKGen(〈(S,msk)(U, id, ℓ;ρ)〉) is an interactive protocol, in which an

honest user U with identity id ∈ ID obtains the corresponding user secret
key usk[id] from the master authority S or outputs an error message, while
S’s output is nothing or an error message (ℓ is a label and ρ the random-
ness).

Defining the security of a BlindIBKEM requires two additional properties, stated
as follows (see [GH07, pages 6 and 7] for the formal security games):

1. Leak-free Secret Key Generation (called Leak-free Extract for Blind
IBE security in the original paper): A potentially malicious user cannot
learn anything by executing the BlindUSKGen protocol with an honest au-
thority which he could not have learned by executing the USKGen protocol
with an honest authority. Moreover, as in USKGen, the user must know
the identity for which he is extracting a key.

26

Setup(1K) Return param← GGen(1K)

Setup(param):

A
$← Dk, B = Ā

For i = 0, . . . , ℓ :
zi

$← Zk+1×n
p ;Zi = z⊤i ·A ∈ Zn×k

p

z′
$← Zk+1

p ;Z ′ = z′
⊤ ·A ∈ Z1×k

p

pk := (G, [A]1, ([Zi]1)0≤i≤ℓ, [Z
′]1)

sk := ((zi)0≤i≤ℓ, z
′)

Return (pk, sk)

USKGen(sk, id ∈ ID)a:

t
$← Zn

q ;

v =
∑l(id)

i=0 fi(id)zit+ z′ ∈ Zk+1
q

S
$← Zn′×µ

p ; T = B · S ∈ Zn×µ
p

V =
∑l(id)

i=0 fi(id)ZiT ∈ Z
(k+1)×µ
p

For i = 0, . . . , ℓ :
ei = Zit ∈ Zk+1

p ; Ei = ZiT ∈ Zk+1×µ
p

usk[id] := ([t]2, [v]2) ∈ Gn
2 ×Gk+1

2

udk[id] := ([T]2, [V]2, ([ei]2, [Ei]2)i,id[i]=1)

∈ G
n×µ
2 × G

(k+1)×µ
2 × (Gk+1

2 ×

G
(k+1)×µ
2)Ham(id)

Return (usk[id], udk[id])

Enc(pk, id):

r
$← Zk

p

c0 = Ar ∈ Zk+1
p

c1 = (
∑l(id)

i=0 fi(id)Zi) · r ∈ Zn
p

K = z′0 · r ∈ Zp.
Return sk = [K]T and C = ([c0]1, [c1]1)

aµ is the difference between the maximal size for
and identity and the size of the identity id

USKDel(usk[id], ĩd):

Note ℓ the size of id, and ℓ̃ the size of
ĩd

// Delegating the key:

v̂ = v +
∑ℓ̃

i=ℓ+1 fi(id
′)ei ∈ Zk

p

V̂ = V +
∑ℓ̃

i=ℓ+1 fi(id
′)Ei ∈ Zk×µ

p

// Rerandomization of (v̂, V̂):

s′
$← Zµ

p ; S′ $← Zµ×µ
p

t′ = t + Ts′ ∈ Zn
p ;

T ′ = T̂ · S′ ∈ Zn×µ
p

v′ = v̂ + V̂ · s′ ∈ Zk
p;

V ′ = V̂ · S′ ∈ Zk×µ
p

// Rerandomization of ei:
For i, ĩd[i] = 1:

e′i = ei + Eis
′ ∈ Zk+1

p ;

E′
i = Ei · S

′ ∈ Z
(k+1)×µ
p

usk[id′] := ([t′]2, [v
′]2)

udk[id′] :=
([T ′]2, [V

′]2, ([e
′
i]2, [E

′
i]2)i,ĩd=1)

Return (usk[id′], udk[id′])

Dec(usk[id], id,C):

Parse usk[id] = ([t]2, [v]2)
Parse C = ([c0]1, [c1]1)
sk = e([c0]1, [v]2) · e([c1]1, [t]2)

−1

Return sk ∈ GT

Figure 2.11: HIBE based on k −MDDH

2. Selective-failure Blindness: A potentially malicious authority cannot
learn anything about the user’s choice of identity during the
BlindUSKGen protocol; Moreover, the authority cannot cause the
BlindUSKGen protocol to fail in a manner dependent on the user’s choice.

For our applications, we only need a weakened property for blindness:

3. Weak Blindness: A potentially malicious authority cannot learn any-
thing about the user’s choice of identity during the BlindUSKGen protocol.

27

2.6 Non Interactive Zero Knowledge (NIZK) Argu-
ment

A Zero Knowledge Argument introduced in [GMR89], is a set of algorithms
involving two parties: a prover and a verifier. These algorithms allow the prover
to prove the veracity of a statement without leaking any information. We want
three properties on this set of algorithms:

• The verifier should be convinced of the statement if it is actually true

• The verifier should not be able to prove a false statement

• A listener should not learn anything from communication listening.

We call these three properties respectively Completeness, Soundness and
Zero Knowledge. Let’s formally define a NIZK Argument and describe the
properties. For simplicity we describe a statement as a word in a (set of)
language(s). For example to prove that a user possesses a solution from an
equation, the language will be the set of all solutions of this precise equation.

Definition 13 (Non-Interactive Zero Knowledge Argument). Assuming a ran-
domness distribution Dparam (for a public set of parameters param) and a set
of languages {Lρ}ρ parameterized by a randomness ρ ← Dparam and associated
with a relation Rρ (meaning that a word x belongs to Lρ if and only if there
exists a witness w such that Rρ(x,w) holds), a NIZK argument Π for this set of
languages {Lρ}ρ consists of five probabilistic polynomial time (PPT) algorithms
Π = (Genparam,Gencrs,Prove, Sim,Ver) defined as follows:

• Genparam(K) returns the public parameters param.
• Gencrs(param, ρ) returns a common reference string crs and a trapdoor tk.

We assume that crs contains the parameters param, a description of the
language Lρ.

• Prove takes as input crs, a word x of the language Lρ and a witness w
corresponding to this word. If (x,w) /∈ Rρ, it outputs failure. Otherwise,
it outputs a proof π.

• Ver takes as input crs, a word x and a proof π. It outputs a bit b (either 1
if the proof is correct, or 0 otherwise).

• Sim takes as input crs, a trapdoor tk and a word x. It outputs a proof π
for x (not necessarily in Lρ).

These algorithms must satisfy the following properties

Perfect Completeness: for all adversary A, all security parameter K, all
public parameters param ← Genparam(K), all randomness ρ ← Dparam and all
(x,w) ∈ Rρ, the following holds:

Pr[(crs, tk)← Gencrs(param, ρ);π ← Prove(crs, x, w) : Ver(crs, x, π) = 1] = 1

28

Perfect Soundness: For a given security parameter K, a scheme achieves
soundness if for all adversary A, we have

Pr[param← Genparam(K); ρ← Dparam; (crs, tk)← Gencrs(param, ρ);
(x, π)← A(param, crs, ρ) : x /∈ Lρ ∧ Ver(crs, x, π) = 1] = 0

Perfect Zero-Knowledge: for all K, all param ← Genparam(K), all ρ ←
Dparam, all (crs, tk) ← Gencrs(param, ρ) and all (x,w) ∈ Rρ, the distributions
Prove(crs, x, w) and Sim(crs, tk, x) are the same.

We say that Zero-Knowledge Proofs are Non-interactive (NIZK) if there is no
interaction between the prover and the verifier. Note that efficient NIZK proof
for pairing equations were found only in 2008 by Groth and Sahai [GS08]. Today
their scheme has been optimized and improved in different work like [BFI+10]
but this is still the only efficient way to deal with this problem.

2.7 Commitments and Smooth Projective Hash Func-
tions

In this section we will define, give security definition and example of Commit-
ment and Smooth Projective Hash Functions. We will use these two primitives
together to achieve different kind of protocols like Oblivious Transfer or Obliv-
ious Language-based Envelop. It has already been used in many cases like
Oblivious Signature-based Envelop [BPV12] or Password Authenticated Key
Exchange [ABB+13].

Definition 14 (One Way Hash Function Family). A One Way Hash Function
Family is a set H = {Hk}k∈K of functions from a space A to a space B that
verifies:

• The probability that an adversary find k ∈ K, (a, a′) ∈ A2 such that a 6= a′

and Hk(a) = Hk(a
′) is negligible. This is called the collision resistance

property.
• ∀k ∈ K Hk is efficiently computable.

2.7.1 Definitions and Security

Commitments allow a user to commit to a value without revealing it, but
without the possibility to later change his mind. It is composed of these algo-
rithms:

• SetupCom(1K) generates the system parameters param, according to the
security parameter K.

• KeyGen(param) generates a commitment key ck.
• Commit(ck,m; r) produces a commitment c and a opening data δ on the

input message m ∈M using the random coins r
$← R.

29

• VerCom(ck, δ, c,m; r) outputs 1 if c is a commitment of m with the ran-
domness r for the commitment key ck along with opening data δ.

Such a commitment scheme should be both hiding, which says that the commit
phase does not leak any information about m, and binding, which says that
the decommit phase should not be able to open to two different messages.

Additional features are also sometimes required, such as non-malleability, ex-
tractability, and/or equivocability. We may also include a label ℓ12, which is an
additional public information that has to be the same in both the commit and
the decommit phases.

A commitment scheme is said equivocable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and two algorithms

• SimComℓ(τ) that takes as input the trapdoor τ and a label ℓ and outputs
a pair (C, eqk), where C is a commitment and eqk an equivocation key;

• OpenComℓ(eqk, C, x) that takes as input a commitment C, a label ℓ, a
message x, an equivocation key eqk, and outputs an opening data δ for C
and ℓ on m.

such that the following properties are satisfied:

• trapdoor correctness (all simulated commitments can be opened on any
message)

• setup indistinguishability (one cannot distinguish the parameters param

generated by SetupCom from the one generated by SimCom)

• simulation indistinguishability (one cannot distinguish a real commitment
(generated by Com) from a fake commitment (generated by SCom) even
with oracle access to fake commitments), denoting by SCom the algorithm
that takes as input the trapdoor τ , a label ℓ and a message x and which
outputs (C, δ)

$← SComℓ(τ, x), computed as (C, eqk)
$← SimComℓ(τ) and

δ ← OpenComℓ(eqk, C, x).

A commitment scheme C is said extractable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and a new algorithm

• ExtComℓ(τ, C) which takes as input the trapdoor τ , a commitment C, and
a label ℓ, and outputs the committed message x, or ⊥ if the commitment
is invalid.

such that the following properties are satisfied:

12The label is here to avoid resend of the exact same commitment, thus the label will contain
session’s id

30

• trapdoor correctness (all commitments honestly generated can be correctly

extracted: for all ℓ, x, if (C, δ)
$← Comℓ(x) then ExtComℓ(C, τ) = x)

• setup indistinguishability (as above)

• binding extractability (one cannot fool the extractor, i.e., produce a com-
mitment and a valid opening data to an input x while the commitment
does not extract to x).

Smooth projective hash functions (SPHF) were introduced by Cramer and
Shoup in [CS02] for constructing encryption schemes. A projective hashing
family is a family of hash functions that can be evaluated in two ways: using the
(secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on
a special subset of its domain. Such a family is deemed smooth if the value of
the hash function on any point outside the special subset is independent of the
projected key. The notion of SPHF has already found applications in various
contexts in cryptography (e.g. [GL03, Kal05, ACP09]). A Smooth Projective
Hash Function over a language L ⊂ X, onto a set G, is defined by five algorithms
(Setup,HashKG,ProjKG,Hash,ProjHash):

• Setup(1K) where K is the security parameter, generates the global parame-
ters param of the scheme, and the description of an NP language L where
there exists witness to prove that a word belong to a language;

• HashKG(L, param), outputs a hashing key hk for the language L;
• ProjKG(hk, (L, param),W), derives the projection key hp from the hashing

key hk and the word W .
• Hash(hk, (L, param),W), outputs a hash value v ∈ G, using the hashing

key hk and the word W .
• ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, using the

projection key hp and the witness w that the word W ∈ L.

In the following, we assume L is a hard-partitioned subset of X, i.e. it is
computationally hard to distinguish a random element in L from a random
element in X \ L. An SPHF should satisfy the following properties:

• Correctness : Let W ∈ L and w a witness of this membership. Then, for
all param, all hashing keys hk and associated projection keys hp we have

Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).
• Smoothness: For all W ∈ X \L the following distributions are statistically

indistinguishable:

∆0 =

(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W)

∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← G

}
.

31

This is formalized by: Advsmooth
SPHF (K) =

∑
V ∈G |Pr∆1

[v = V]− Pr∆0
[v = V]| is

negligible.

• Pseudo-Randomness : If W ∈ L, then without a witness of membership the
two previous distributions should remain computationally indistinguish-
able. For any PPT adversary A, this advantage is negligible:

Adv
pr
SPHF,A(K) = |Pr∆1

[A(L, param,W, hp, v) = 1]− Pr
∆0

[A(L, param,W, hp, v) = 1]|

2.7.2 Examples

Examples of Commitment: As well described in [ABB+13] we have inter-
esting examples of commitment schemes:

An encryption scheme E can be used as a commitment in the following way:

• SetupCom(1K)← SetupE(1
K)

• KeyGen(param)← KeyGenE(param): ck← pk

• Commit(ck,m)← EncryptE(ek,m; r) : (c, δ) = (cE , r)

• VerCom(ck, δ, c)← (c == EncryptE(ek,m; r))

This commitment is perfectly binding since the correctness of the encryption
scheme ensure that the message encrypted is m. The scheme is also computa-
tionally hiding because of the ind-cpa security of the encryption scheme. Note
that from this type of commitment it is easy to have an extractable commitment
by adding as extraction algorithm the decryption algorithm of E the trapdoor
will be the decryption key.

The commitment from [AFG+10]:

• SetupCom(1K): param← GGen(1K)

• KeyGen(param): Outputs an independent generator T .

• Commit(T,m; r) : (c, δ) = (gr2T
m, gr1) ∈ GT

• VerCom(ck, δ, c) : Checks e(g1, c/T
m) = e(δ, g2) ∈ GT

It is perfectly hiding: indeed from one commitment every message could have
been in it: if T = gt and c = ga2 then a valid δ for m is ga−tm

1 . The scheme
is computationally binding under DDH in G2. This lead to an equivocable
commitment scheme when leaking the discrete logarithm of T as equivocation
key.

32

Chameleon hash functions

Chameleon hash functions can instantiate a perfectly hiding commitment. A
chameleon hash function is a hash function where there is an additional algo-
rithm using a trapdoor key, which, given a message a randomness and a second
message, can find a second randomness such that the hash of the first message
with the first randomness is equal to the hash of the second message with the
second randomness. Moreover without the trapdoor key the function should
be collision resistant. If a commitment is a hash value since it could be from
any message, the commitment is perfectly hiding under the correctness of the
chameleon hash function. The commitment is computationaly biding under the
collision resistance of the hash function. CDH-based Chameleon Hash [BC15] is
a nice example of such scheme and we will use it later.

Definition 15 (Chameleon Hash Function). A chameleon hash function is made
of five algorithm (KeyGen,VKeyGen,CH,Coll,Valid)

• KeyGen(K) returns a hashing key ck and a trapdoor key tk.

• VKeyGen(ck) generates the verification keys vtk and add an element to ck

• CH(ck,m; r) returns a hash value of the message m using the randomness
r.

• Coll(m, r,m′, tk) returns a random r′ such that the couples (m, r) and
(m′, r′) have the same hash value.

• Valid(ck,m, a, d, vtk) returns 1 if the hash is valid.

KeyGen(K):
Outputs ck = (g, h)
and tk = α, where gα = h

VKeyGen(ck):
Appends f to ck and vtk = logg(f)

CH(ck,m; r):

Picks r
$← Zp

outputs a = hrgm, sets d = fr

Coll(m, r,m′, tk):

outputs r′ = r + (m−m′)/α

Valid(ck,m, a, d, vtk):

Checks a = hm · d1/vtk

Figure 2.12: CDH-based Chameleon Hash [BC15]

This is a CDH variant of the Pedersen chameleon hash [Ped92] (Figure 2.12).

Example of SPHF: Let’s describe a simple example:

Let’s say param contains (g, h) ∈ G

• Language: L = {(g1, h1)|∃α ∈ Zp, g1 = gα∧h1 = hα}, the witness: w = α.

33

• HashKG(L)← hk = sk2 = (x1, x2)

• ProjKG(hk;L)← hp = pk2 = Y x1

1 gx2

• Hash(sk2;L, C)←
e(C1, ν)

x1 · (e(C3, g)/(e(h, pk1) · e(νF(M), C2)))
x2

• ProjHash(pk2,L, C, r)← e(pkr2, ν)

Figure 2.13: SPHF over Linear Encryptions of Valid Waters
Signature

• HashKG(LM) : hk
$← Zk+2

p ,

• ProjKG(hk, (LM , ℓ, [C]2)) : Setting ht =

(
pk1

pk2 + θpk3

)
, we have [hp]2 =

[
hk⊤ht

]
2
, where θ = H(ℓ, e),

• Hash(hk, (LM , ℓ, [C]2)) : [H]2 ←
[
hk⊤

(
C − (0 |M)⊤

)]
2
,

• ProjHash(hp, (LM , ℓ, [C]2),µ) : [H
′]2 ← [hpµ]2

Figure 2.14: SPHF over k −MDDH Cramer Shoup Encryption

• Hashing key (private): hk = (λ, µ)
$← Z2

p

• Projection key (public): hp = gλhµ

• Hash: H = gλ1h
µ
1

• Projection: H ′ = hpα

At this point we can make a link between some primitives already mentioned
in Figures 2.3 and 2.10. We will describe an SPHF on the language: linear
encryptions of valid waters signature which has already been used in the liter-
ature [BPV12].

We can build a SPHF over the k−MDDH Cramer Shoup encryption by following
[EHK+13,BBC+13b] described in figure 2.14 (ek = (ek1, ek2, ek3) coming from
the encryption scheme).

2.8 Oblivious Transfer

An Oblivious Transfer is a protocol involving a sender and a receiver that we
will sometimes call database and user respectively. It allows a user to have
access to a special line in a database that he is requesting. This has to be done
under two conditions: first the user should not have any information about the
other lines, second the database should not know which line has been requested.
Let’s describe this formally:

34

2.8.1 Definition and Security

Definition and Security Model for Oblivious Transfer We will now rigor-
ously describe our OT protocol formalism using languages. It will thus fit what
as been said and the formalism of SPHF that we will need.

In this protocol a server S possesses a database of n lines (m1, . . . ,mn) ∈
({0, 1}K)n. And a user U will be able to recover mk as soon as he requested
it. We will say that he is able to recover a line as long as he owns a word
Wk ∈ Lk

13. As we consider simulation-based security (in the UC framework),
we allow a simulated setup SetupT to be run instead of the classical setup Setup

in order to allow the simulator to possess some trapdoors. Those two setup
algorithms should be indistinguishable.

Definition 16 (Oblivious Transfer). An OT scheme can be formalized in five
algorithms (Setup,KeyGen,DBGen, Samp,Verify), along with an interactive pro-
tocol Protocol〈S, U〉:

• Setup(1K), where K is the security parameter, generates the global param-
eters param, among which the number n;

or SetupT(1K), where K is the security parameter, additionally allows the
existence14 of a trapdoor tk for the collection of languages (L1, . . . ,Ln).

• KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, description of the lan-
guage Li (as well as the language key skLi

if need be). If the parameters
param were defined by SetupT, this implicitly also defines the common
trapdoor tk for the collection of languages (L1, . . . ,Ln).

• Samp(param, (skLi
)i∈{1,...,n}

15) generates a word Wi ∈ Li;
• Verifyi(Wi,Li) checks whether Wi is a valid word in the language Li. It

outputs 1 if the word is valid, 0 otherwise;
• Protocol〈S((L1, . . . ,Ln), (m1, . . . ,mn)), U((L1, . . . ,Ln),Wi)〉, which is ex-

ecuted between the server S with the private database (m1, . . . ,mn) and
corresponding languages (L1, . . . ,Ln), and the user U with the same lan-
guages and the word Wi, proceeds as follows. If the algorithm Verifyi(Wi,Li)
returns 1, then U receives mk, otherwise it does not. In any case, S does
not learn anything.

We define the security of Oblivious Transfer in the UC model because we will
use only UC-secure Oblivious Transfer.

The ideal functionality of an Oblivious Transfer (OT) protocol was given in [Can01,
CKWZ13,ABB+13], and an adaptive version in [GH08]. We describe it in figure
2.15.

13The languages (L1, . . . ,Ln) will be assumed to be a trapdoor collection of languages,
publicly verifiable and self-randomizable, these notion are formally defined in the next section,
where we introduce what is an Oblivious-based Language Envelop

14The specific trapdoor will depend on the languages and be computed in the KeyGen

algorithm.
15Optional

35

The functionality F(1,n)-OT is parametrized by a security parameter K. It in-
teracts with an adversary S and a set of parties P1,. . . ,PN via the following
queries:
• Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mn))

from Pi, with mk ∈ {0, 1}K: record the tuple (sid, ssid,
Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to S . Ignore fur-
ther Send-message with the same ssid from Pi.

• Upon receiving an input (Receive, sid, ssid,Pi,Pj, s) from Pj,
with s ∈ {1, . . . , n}: record the tuple (sid, ssid,Pi,Pj , s), and reveal
(Receive, sid, ssid,Pi,Pj) to S . Ignore further Receive-message with
the same ssid from Pj .

• Upon receiving a message (Sent, sid, ssid,Pi,Pj) from the ad-
versary S : ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) or
(sid, ssid,Pi,Pj , s) is not recorded; otherwise send (Sent, sid, ssid,Pi,Pj)
to Pi and ignore further Sent-message with the same ssid from the adver-
sary.

• Upon receiving a message (Received, sid, ssid,Pi,Pj) from the
adversary S : ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn))
or (sid, ssid,Pi,Pj , s) is not recorded; otherwise send
(Received, sid, ssid,Pi,Pj ,ms) to Pj and ignore further Received-
message with the same ssid from the adversary.

Figure 2.15: Ideal Functionality for 1-out-of-n Oblivious
Transfer F(1,n)-OT

We will also need the ideal functionality of an adaptive Oblivious Transfer (OT)
protocol. It was given in [Can01,CKWZ13,ABB+13], and an adaptive version
in [GH08]. We here combine them and rewrite it in simple UC and using our
language formalism (this enables us to get rid of Sent and Received queries
from the adversary since the delayed outputs are automatically considered in
this simpler framework: We implicitly let the adversary determine if it wants
to acknowledge the fact that a message was indeed sent). The first step for
the sender (Send query) consists in telling the functionality he is willing to take
part in the protocol, giving as input his intended receiver and the messages he is
willing to send (up to nmax messages). For the receiver, the first step (Receive
query) consists in giving the functionality the name of the player he intends
to receive the messages from, as well as his words. If the word does belong to
the language, the receiver recovers the sent message, otherwise, he only gets
a special symbol ⊥. The resulting functionality FL

OT is given in Figure 2.16.
Recall that there is no need to give an explicit description of the corruptions in
the simple version of UC [CCL15].

36

The functionality FL
OT is parametrized by a security parameter K and a set

of languages (L1, . . . ,Ln) along with the corresponding public verification al-
gorithms (Verify1, . . . ,Verifyn). It interacts with an adversary S and a set of
parties P1,. . . ,PN via the following queries:
• Upon receiving from party Pi an input (NewDataBase, sid, ssid,
Pi,Pj, (m1, . . . ,mn)) , with mk ∈ {0, 1}

K for all k: record the tuple
(sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal (Send, sid, ssid,Pi,Pj) to the
adversary S . Ignore further NewDataBase-message with the same ssid

from Pi.
• Upon receiving an input (Receive, sid, ssid,Pi,Pj,Wk) from

party Pj : ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not
recorded. Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to the adver-
sary S and send the message (Received, sid, ssid,Pi,Pj ,m

′
k) to Pj

where m′
k = mk if Verifyk(Wk,Lk) returns 1, and m′

k = ⊥ otherwise.
(Non-Adaptive case: Ignore further Receive-message with the same ssid from
Pj.)

Figure 2.16: Ideal Functionality for (Adaptive) Oblivious
Transfer FL

OT

2.8.2 Example

The example from [ABB+13] is interesting in our context since it makes use
of commitments and Smooth Projective Hash Functions. We will talk again
about this scheme in Section 5.2.3. The key idea of this scheme is to create a
language for each line of the database: for a line mi we will create the language
of all commitments of the number i. Thus the sender will mask each line mj

with the hashed value of the commitment for the language {com(j)}. But the
commitment lie only in one language: it means that the receiver can only recover
the hashed value for the language he committed to. Moreover the sender does
not know which line has been committed as wished. In the example we use a
commitment, a ind-cpa-secure encryption and a Pseudo-Random Generator F
with input size equal to the plaintext size and output size equal to the size of
the lines in the database.

37

CRS generation:
ρ

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow :

1. S generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk

and completely erases the random coins used by KeyGencpa.

2. S publishes pk.

Index query on s:

1. R chooses a random value J , computes R← F (J) and encrypts J under

pk: c
$← Encryptcpa(pk, J)

2. R computes (C, δs)
$← Comℓ(s) with ℓ = (sid, ssid,R,S)

3. R stores δs, R, completely erases the random coins used and sends C
and c to S

Database answer (m1, . . . ,mn):

1. S decrypts J ← Decryptcpa(sk, c) and gets R← F (J)

2. For each line k = 1, . . . , n,

• S computes hkk
$← HashKG(Lk), hpk ← ProjKG(hkk,Lk, (ℓ, C)),

Kk ← Hash(hkk,Lk, (ℓ, C)),

• S computes Qk ← R⊕Kk ⊕mk

3. S erases everything except (hpk, Qk)k=1,...,n and sends it to R.

Data recovery:
Upon receiving (hpk, Qk)k=1,...,n, R computes Ks ←
ProjHash(hps,Ls, (ℓ, C), δ) and gets ms ← R⊕Ks ⊕Qs.
Then R erases everything except ms.

Figure 2.17: UC-Secure 1-out-of-n OT from an SPHF-Friendly
Commitment

38

Chapter 3

New Featured-Identity-based

Encryption and Generalization

First, we present a generalization of IBE named Downgradable IBE that will
help us to build a generic transformation from IBE to Attribute-based Encryp-
tion in the next chapter. We also describe the transformation to come from
this new primitive to other already known Identity-based primitives. Then we
present a generic transformation from IBE to Blind IBE. This primitive allows
a user to ask for a user secret key without the authority knowing which user
has been requested.

3.1 Downgradable Identity-based Encryption

The purpose of this section is not to just add another variant of Identity-based
encryption. What we aim here is to create an IBE scheme with the minimal
additional properties allowing it to be transformed into Attribute-based En-
cryption1. We found out that this variant of IBE that we named Downgradable
IBE can be seen as a generalization of many existing IBE’s variant. First, we
define this new primitive and then we describe the transformations from it to
other Identity-based primitives.

3.1.1 Downgradable Identity-based Encryption

In this section we introduce the notion of Downgradable Identity-Based Encryp-
tion. For simplicity we are going to express it in term of Key Encapsulation.

Definition 17 (Downgradable Identity-based Key Encapsulation Scheme). A
Downgradable identity-based key encapsulation (DIBKEM) scheme DIBKEM con-
sists of five PPT algorithms DIBKEM = (Setup,USKGen,Enc,Dec,USKDown)
with the following properties.

1We describe the transformation in Section 4.2.

39

Procedure Initialize:

(pk, sk)
$← Setup(K)

Return pk

Procedure USKGen(id):

QID = QID ∪ {id}

Return usk[id]
$← USKGen(sk, id)

Procedure Enc(id∗): //one
query

(K∗,C∗)
$← Enc(pk, id∗)

K∗ $← K;C∗ $← CS

Return (K∗,C∗)

Procedure Finalize(β):

Return (¬(id∗ � QID)) ∧ β

Figure 3.1: Security Games PR-ID-CPAreal and PR-ID-CPArand (using
(K∗,C∗) boxed) for defining PR-ID-CPA-security for DIBKEM.

• The probabilistic key generation algorithm Setup(K) returns the (master)
public/secret key (pk, sk). We assume that pk implicitly defines a message
space M, an identity space ID, a key space K, and ciphertext space CS.

• The probabilistic user secret key generation algorithm USKGen(sk, id) re-
turns the user secret-key usk[id] for identity id ∈ ID.

• The probabilistic encapsulation algorithm Enc(pk, id) returns the symmet-
ric key K ∈ K together with a ciphertext C ∈ CS with respect to identity
id.

• The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the
decapsulated key K ∈ K or the reject symbol ⊥.

• The probabilistic user secret key downgrade algorithm USKDown(usk[id], ĩd)
returns the user secret-key usk[ĩd] as long as ĩd � id2.

For perfect correctness we require that for all K ∈ N, all pairs (pk, sk) generated
by Setup(K), all identities id ∈ ID, all usk[id] generated by USKGen(sk, id) and
all (sk,C) output by Enc(pk, id):

Pr[Dec(usk[id], id,C) = sk] = 1.

Moreover, we also require the distribution of usk[ĩd] from
USKDown(usk[id], ĩd) to be identical to the one from USKGen(sk, ĩd).

The security requirements we consider here are indistinguishability and anonymity
against chosen plaintext and identity attacks. Instead of defining both security
notions separately, we define pseudorandom ciphertexts against chosen plain-
text and identity attacks (PR-ID-CPA) which means that challenge key and
ciphertext are both pseudorandom. We define PR-ID-CPA-security of DIBKEM
formally via the games given in Figure 3.1.

Definition 18 (PR-ID-CPA Security). A downgradable identity-based key en-
capsulation scheme DIBKEM is PR-ID-CPA-secure if for all PPT A ,

Adv
pr-id-cpa
DIBKEM (A) := |Pr[PR-ID-CPAA

real ⇒ 1]−Pr[PR-ID-CPAA
rand ⇒ 1]| is negligi-

ble.

2 ĩd � id means that for all i, if ĩdi = 1 then idi = 1

40

DIBE

WKD-IBE WIBE HIBE

DNF-ABE

Known
Known, tight

Ours

Figure 3.2: Relations Between Primitives

We stress the importance of the condition: (¬(id∗ � QID)). This is here to
guarantee that the adversary did not query an identity that can be downgraded
to the challenge one, as this would allow for a trivial attack.

Motivations: The point of creating Downgradable IBE was to construct a
primitive the closer from IBE that could be transformed into Attribute-based
Encryption. Attribute-Based Encryption (ABE), introduced by Sahai and Wa-
ters [SW05], is a generalization of both identity-based encryption and broadcast
encryption. It gives a flexible way to define the target group of people who can
receive the message: the target set can be defined in a more structural way
via access policies on the user’s attributes. While broadcast encryption can be
obtained from WIBE, as far as we know, this work is the only efficient generic
construction of ABE from a variant of IBE. The transformation from DIBE to
ABE have for access policies as boolean formulas on the user’s attributes in the
DNF.

3.1.2 Generalization of Existing Id-based Primitives

As explained previously we will give transformations from DIBE to different
variant of IBE. In the figure 3.2 we describe the new transformation we will
achieve along with the existing ones.

From DIBE to WIBE

Wildcard Identity-Based Encryption is a concept introduced in [ACD+06]. The
idea is to be able to encrypt messages for several identities by fixing some
identity bits and letting others free (symbolized by the ∗). Thus only people
with identity matching the one used to encrypt can decrypt. We say that id

matches id′ if ∀i idi = id′i or id′i = ∗
3.

Definition 19 (Wildcard Identity-based Key Encapsulation Scheme). A Wild-
card identity-based key encapsulation scheme WIBKEM consists of five PPT al-
gorithms WIBKEM = (Setup,USKGen,Enc,Dec) with the following properties.

3idi are bits or group of bits called pattern

41

• The probabilistic key generation algorithm Setup(K) returns the (master)
public/secret key (pk, sk). We assume that pk implicitly defines a message
space M, an identity space ID = {0, 1}n, a key space K, and ciphertext
space CS.

• The probabilistic user secret key generation algorithm USKGen(sk, id) re-
turns the user secret-key usk[id] for identity id ∈ ID.

• The probabilistic encapsulation algorithm Enc(pk, id) returns the symmet-
ric key K ∈ K together with a ciphertext C ∈ CS with respect to an identity
id ∈ ˆID = {0, 1, ∗}n, this means that ∀i, idi ∈ {0, 1, ∗}.

• The deterministic decapsulation algorithm Dec(usk[id], îd,C) returns the
decapsulated key K ∈ K or the reject symbol ⊥.

For perfect correctness we require that for all K ∈ N, all pairs (pk, sk) generated
by Setup(K), all identities id ∈ ID, all usk[id] generated by USKGen(sk, id) and
all (sk,C) output by Enc(pk, îd) for îd ∈ ˆID such that îd �∗ id:

Pr[Dec(usk[id], id,C) = sk] = 1.

We are now given a DIBKEM(Setup,USKGen,Enc,Dec,USKDown), let us show
how to build the corresponding WIBKEM.

As with all the following constructions, the heart of the transformation will be
to use a DIBKEM for identity of size 2ℓ to handle identities of size ℓ.

Let’s consider an identity wid of size ℓ, we define id = φ(wid) as follows:

id[2i, 2i+ 1] =

01 if wid[i] = 0
10 if wid[i] = 1
00 otherwise.

Now we can define :

• WIBE.Setup(K) : Setup(K), except that instead of defining ID as strings of
size 2ℓ, we suppose the public key define WID of enriched identities of size
ℓ.

• WIBE.USKGen(sk, id) = USKGen(sk, φ(id)).
• WIBE.Enc(pk, id) = Enc(pk, φ(id)).
• WIBE.Dec(usk[id], îd,C) checks if îd � id, then computes
usk[φ(îd)] = USKDown(usk[φ(id)]). Returns Dec(usk[φ(îd), îd,C) or rejects
with ⊥.

The WIBE constructed inherits his security from the DIBE. Due to the con-
struction an adversary against the security of the WIBE will give an adversary
against the security of the DIBE.

From DIBE to HIBE

Hierarchical Identity-Based Encryption is a concept introduced in [GS02]. The
idea of this primitive is to introduce a hierarchy in the user secret key. A user can
create a secret key from his one for any identity with prefix his own identity.

42

Instead of defining ID as strings of size 2ℓ needed for the transformation, we
suppose the public key define HID of enriched identities of size ℓ.

We recall syntax and security of a hierarchical identity-based key encapsulation
mechanism (HIBKEM).

Definition 20 (Hierarchical Identity-Based Key Encapsulation Mechanism).
A hierarchical identity-based key encapsulation mechanism HIBKEM consists of
five PPT algorithms HIBKEM = (Setup,USKDel,USKGen,Enc,Dec) with the
following properties.

• The probabilistic key generation algorithm Setup(K) returns the (master)
public/secret key and delegation key (pk, sk). We assume that pk implicitly
defines a message space M and hierarchical identity space ID = {0, 1}≤n.

• The probabilistic user secret key generation algorithm USKGen(sk, id) re-
turns a secret key usk[id] for hierarchical identity id ∈ ID.

• The probabilistic key delegation algorithm USKDel(usk[id], id ∈ {0, 1}p, idp+1 ∈
{0, 1}≤n) returns a user secret key usk[id|idp+1] for the hierarchical identity
id′ = id | idp+1 ∈ {0, 1}

p+1. We require 1 ≤ |id| ≤ m− 1.

• The probabilistic encapsulation algorithm Enc(pk, id) returns a symmetric
key K ∈ K together with a ciphertext C with respect to the hierarchical
identity id ∈ ID.

• The deterministic decapsulation algorithm Dec(usk[id], id,C) returns a de-
capsulated key K ∈ K or ⊥.

For correctness we require that for all K ∈ N, all pairs (pk, sk) generated by
Setup(K), all id ∈ ID, all usk[id] generated by USKGen(sk, id) and all (sk, c)
generated by Enc(pk, id):

Pr[Dec(usk[id], id,C) = sk] = 1.

Moreover, we also require the distribution of usk[id|idp+1] from
USKDel(usk[id], udk[id], id, idp+1) to be identical to the one from USKGen(sk, id|idp+1).

This time, we are going to map the identity space to a bigger set, with joker
identity that can be downgraded to both 0 or 1.

Let’s consider an identity hid of size ℓ, we define id = φ(hid) as follows:

id[2i, 2i+ 1] =

01 if hid[i] = 0
10 if hid[i] = 1
11 otherwise(hid[i] = ⊥).

Now we can define :

• HIB.Setup(K) : Setup(K), except instead of defining ID define HID of en-
riched identities of size ℓ.

43

• HIB.USKGen(sk, id) = USKGen(sk, φ(id)). 4

• HIB.USKDel(usk[id], id ∈ {0, 1}p, idp+1 ∈ {0, 1}) = USKDown(usk[φ(id)], φ(id||idp+1)).
By construction we have φ(id||idp+1) � φ(id).

• HIB.Enc(pk, id) = Enc(pk, φ(id)).
• HIB.Dec(usk[id], id,C) returns Dec(usk[φ(id), φ(id),C) or the reject symbol
⊥.

The HIBE constructed inherits his security from the DIBE. Due to the con-
struction an adversary against the security of the HIBE will give an adversary
against the security of the DIBE.

From DIBE to Wicked IBE The paper [AKN07] presents a variant of Identity-
based Encryption called Wicked IBE (WKD-IBE). A wicked IBE or wildcard
key derivation IBE is a generalization of the concept of limited delegation con-
cept by Boneh-Boyen-Goh [BBG05].

This scheme allows secret key associated with a pattern P = (P1, ..., Pl) ∈
{{0, 1}∗ ∪ {∗}}l to be delegated for a pattern P ′ = (P ′

1, ..., P
′
l′) that matches P .

We say that P ′ match P if ∀i ≤ l′ P ′
i = Pi or Pi = ∗ and ∀l′ +1 ≤ i ≤ l Pi = ∗.

Definition 21 (Wicked Identity-Based Key Encapsulation Mechanism). A wicked
identity-based key encapsulation mechanism WKDIB.IBKEM consists of five PPT
algorithms WKDIB.HIBKEM = (WKDIB.Setup,WKDIB.USKDel,WKDIB.USKGen,WKDIB.Enc,
WKDIB.Dec) with the following properties.

• The probabilistic key generation algorithm WKDIB.Setup(K) returns the
(master) public/secret key and delegation key (pk, sk). We assume that
pk implicitly defines a message space M and hierarchical identity space
ID = {0, 1}≤n.

• The probabilistic user secret key generation algorithm WKDIB.USKGen(sk, id)
returns a secret key usk[id] for hierarchical identity id ∈ ID.

• The probabilistic key delegation algorithm WKDIB.USKDel(usk[id], id ∈
{0, 1, ∗}n, id′ ∈ {0, 1}n) returns a user secret key usk[id′] for the identity
id′ matching id5.

• The probabilistic encapsulation algorithm WKDIB.Enc(pk, id) returns a sym-
metric key K ∈ K together with a ciphertext C with respect to the hierar-
chical identity id ∈ ID.

• The deterministic decapsulation algorithm WKDIB.Dec(usk[id], id,C) re-
turns a decapsulated key sk ∈ K or ⊥.

4It should be noted that in case of an HIBKEM, some identities are never to be queried to
the downgradable IBKEM: those with 00 is 2i, 2i+ 1, or those with 11 at 2i, 2i+ 1 and then
a 0 (this would correspond to punctured identities).

5same definition of matching than with WIBE

44

For correctness we require that for all K ∈ N, all pairs (pk, sk) generated by
WKDIB.Setup(K), all id ∈ ID, all usk[id] generated by WKDIB.USKGen(sk, id)
and all (sk, c) generated by WKDIB.Enc(pk, id):

Pr[WKDIB.Dec(usk[id], id,C) = sk] = 1.

Moreover, we also require the distribution of usk[id′] from
USKDel(usk[id], udk[id], id, idp+1) to be identical to the one from USKGen(sk, id|idp+1).

Here again, we are going to map the identity space to a bigger set.

Let us consider an identity id of size ℓ, we define id = φ(wkdid) as follows:

id[2i, 2i+ 1] =

01 if wkdid[i] = 0
10 if wkdid[i] = 1
11 if wkdid[i] = ∗

Now we can define :

• WKDIB.Setup(K) : Setup(K), except instead of defining ID as strings of
size 2ℓ, we suppose the public key define WKDID of enriched identities of
size ℓ.

• WKDIB.USKGen(sk, id) = USKGen(sk, φ(id)). It should be noted that
in case of an WKDIBE, some identities are never to be queried to the
downgradable IBE: those with 00.

• WKDIB.USKDel(usk[id], id, id′) = USKDown(usk[φ(id)], φ(id), φ(id′)).
• WKDIB.Enc(pk, id) = Enc(pk, φ(id)).
• WKDIB.Dec(usk[id], id,C) returns Dec(usk[φ(id), φ(id),C) or the reject sym-

bol ⊥.

The Wicked IBE constructed inherits his security from the DIBE. Due to the
construction an adversary against the security of the Wicked IBE will give an
adversary against the security of the DIBE.

From Wicked IBE to DIBE We can easily transform a Wicked IBE scheme
into DIBE by using only identity made of 0 and ∗. In fact the element 1 of the
DIBE plays the role of the ∗ of the Wicked IBE. Morally a DIBE can be seen as
a Wicked IBE where the patterns are made of only 2 distinct elements instead
of 3. We will describe this scheme here since it is not relevant for our purpose.
We choose to define a new primitive DIBE because the size of the alphabet for
the identities is only 2 and it allows a better efficiency for all schemes based on
DIBE. The wildcard ∗ is hard to handle, the best way is how we do it with our
DIBE, from that remark it is natural to use DIBE instead of Wicked IBE.

3.1.3 Instantiation and Proof of security

We will base instantiate our DIBE scheme on the IBE scheme from [BKP14].
In their scheme, the identity bits are used in a special way in the user secret

45

Setup(param):

B
$← Dk

For i = 0, . . . , ℓ :

zi
$← Z

(k+1)×n
p ;Zi = z⊤i ·A ∈ Zn×k

p

z′
$← Zk+1

p ;Z ′ = z′
⊤ ·A ∈ Z1×k

p

pk := (G, [A]1, ([Zi]1)0≤i≤ℓ, [Z
′]1)

sk := ((zi)0≤i≤ℓ, z
′)

Return (pk, sk)

USKGen(sk, id ∈ ID):

t
$← Zn

p ;

v =
∑l(id)

i=0 fi(id)zit+ z′ ∈ Zk+1
p

S
$← Zn′×µ

p ; T = B · S ∈ Zn×µ
p

V =
∑l(id)

i=0 fi(id)ZiT ∈ Z
(k+1)×µ
p

For i, id[i] = 1:
ei = Zit ∈ Zk+1

p ; Ei = ZiT ∈ Zk+1×µ
p

usk[id] := ([t]2, [v]2) ∈ Gn
2 ×Gk+1

2

udk[id] := ([T]2, [V]2, ([ei]2, [Ei]2)i,id[i]=1)

∈ G
n×µ
2 × G

(k+1)×µ
2 × (Gk+1

2 ×

G
(k+1)×µ
2)Ham(id)

Return (usk[id], udk[id])

Enc(pk, id):

r
$← Zk

p

c0 = Ar ∈ Zk+1
p

c1 = (
∑l(id)

i=0 fi(id)Zi) · r ∈ Zn
p

K = z′0 · r ∈ Zp.
Return sk = [K]T and C = ([c0]1, [c1]1)

USKDown(usk[id], ĩd):

If ¬(ĩd � id), then return ⊥
Set I = {i|ĩd[i] = 0 ∧ id[i] = 1}
// Downgrading the key:

v̂ = v +
∑

i∈I fi(id
′)ei ∈ Zk

p

V̂ = V +
∑

i∈I fi(id
′)Ei ∈ Zk×µ

p

// Rerandomization of (v̂, V̂):

s′
$← Zµ

p ; S′ $← Zµ×µ
p

t′ = t+Ts′ ∈ Zn
p ;

T ′ = T̂ · S′ ∈ Zn×µ
p

v′ = v̂ + V̂ · s′ ∈ Zk
p;

V ′ = V̂ · S′ ∈ Zk×µ
p

// Rerandomization of ei:
For i, ĩd[i] = 1:

e′i = ei +Eis
′ ∈ Zk+1

p ;

E′
i = Ei · S

′ ∈ Z
(k+1)×µ
p

usk[id′] := ([t′]2, [v
′]2)

udk[id′] := ([T ′]2, [V
′]2, ([e

′
i]2, [E

′
i]2))

Return (usk[id′], udk[id′])

Dec(usk[id], id,C):

Parse usk[id] = ([t]2, [v]2)
Parse C = ([c0]1, [c1]1)
sk = e([c0]1, [v]2) · e([c1]1, [t]2)

−1

Return sk ∈ GT

Figure 3.3: A Downgradable IBE based on MDDH

key: a bits set to 0 does not express in the user secret key. This helps us to
create a DIBE by creating the same use secret key and adding for each 1s, an
element to eliminate this expression of the 1.

Remark 2. This instantiation is based on a MAC himself based on HPS. There
is a MAC from Naor-Reingold PRF which is tight secure but we did not manage
to prove its security when transforming it into a downgradable scheme.

Theorem 1. Under the Dk-MDDH assumption, the scheme presented in fig-
ure 3.3 is PR-ID-CPA secure. For all adversaries A there exists an adversary
B with T(A) ≈ T(B) and AdvDIBKEM,Dk

(B)PR-ID-CPA(A) ≤ (AdvDk,GGen(B) +
2qk(AdvDk,GGen(B) + 1/q) 6.

6We recall that qk is the maximal number of query to the Eval oracle

46

Initialize:

skMAC = (B, (xi)0≤i≤ℓ, x
′
0)

$← GenMAC(par)
Return ([B]2, ([x

⊤
i B]2)0≤i≤ℓ)

Eval(m):

QM = QM ∪ {m}

([t]2, [u]2)
$← Tag(skMAC,m)

For i,mi = 1: di = x⊤
i t ∈ Zp

Return ([t]2, [u]2, ([di]2))

Chal(m∗): // one query

h
$← Zp

h0 =
∑

fi(m
∗
i)xi · h ∈ Zn

p

h1 = x′
0 · h ∈ Zp

h1
$← Zp

Return ([h]1, [h0]1, [h1]T)

Finalize(β ∈ {0, 1}):

Return β ∧ (m∗ 6� QM)

Figure 3.4: Games DPR-CMAreal, and DPR0-CMArand (boxed) for
defining DPR0-CMA security.

Remark 3. This instantiation respect the formal definition of DIBKEM (def-
inition 17). However for efficiency purpose one can remark that for realizing
WIBE or ABE the user’s secret keys does not need to be rerandomize during
the delegation phase since it will not be used by another user. It introduce the
concept of self-delegatable-only scheme. Thus we can avoid the heavy elements
T, S,E of the user secret keys. We called this new scheme self-downgradable
IBE.

In this proof we will make use of MAC the primitive and security’s definitions
can be found in Section 2.4.1.

The inner block is a downgradable MAC

Definition 22. An affine MAC over Zn
p is downgradable, if the message space

is M = {0, 1}m for some finite base set {0, 1}, f ′
0(m) = 1, and there exists a

public function f :M→ {0, . . . , ℓ} such that for all m′ � m,

fi(m
′
i) =

{
fi(mi) if mi = m′

i

fi(0) otherwise
.

Let MAC be a delegatable affine MAC over Zn
p with message spaceM = {0, 1}m.

To build a DIBE, we require a new notion denoted as DPR0-CMA security. It
differs from the classical security in two ways. Firstly, additional values needed
for DIBE downgrade process are provided to the adversary through the call
to Initialize and Eval. Secondly, Chal always returns a real h0. (In fact, the
additional values actually allow the adversary to distinguish real from random
h0.)

Let G = (G1,G2,GT , q, g1, g2, e) be an asymmetric pairing group in par. Con-
sider the games from Figure 3.4.

Definition 23. A delegatable affine MAC over Zn
p is DPR0-CMA-secure if for

all PPT A , Adv
dpr0-cma

MAC (A) := Pr[DPR-CMAA
real ⇒ 1]−Pr[DPR0-CMAA

rand ⇒ 1]
is negligible.

47

GenMAC(par):

B
$← Dk

x0, . . . , xl
$← Zk+1

p ;x′
0

$← Zp

skMAC = (B, x0, . . . , xl, x
′
0)

Return skMAC

Tag(skMAC,m):

s
$← Zk

p, t = Bs

u = (x⊤
0 +

∑|m|
i=1 mi · x

⊤
i)t+ x′

0 ∈ Zp

For i,mi = 1, d′i = (−xi)t
Return τ = ([t]2, [u]2, [d]2) ∈ Gk+1

2 ×G2×

G
Ham(m)
2

Down(τ,m,m′):

If m′ � m,
[u′]2 = [u+

∑
i,m′

i
6=mi

di]2
∀i,m′

i = 1, [di]2 = [di]2
Return τ ′ = ([t]2, [u

′]2, [d
′]2) ∈ Gk+1

2 ×

G2 ×G
Ham(m′)
2

Ver(skMAC, τ,m):

If u = (x⊤
0 +

∑|m|
i=1 mi · x

⊤
i)t+ x′

0

then return 1;
Else return 0.

Figure 3.5: Downgradable MAC from HPS [BKP14]

We explicit in Figure 3.5 the inner downgradable MAC we consider in our
scheme. And then prove its security.

In this proof we will show that an adversary will be at some point against a
standard affine MAC thus the security of the MAC we based our instantiation
on, ensure the security of our Downgradable MAC. Intuitively, we will replace
query by query the answer of the Eval oracle by pure randomness in Gk+1

2 ×

G2 ×G
Ham(m)
2 . This proof is close from the proof of security of the affine MAC

from HPS in [BKP14]. G0 is the real security game defined in 3.4. G1,i the first
i − 1 answer to the Eval oracle are random and the rest is answered as in the
real game. We also need a game to switch from gameg1,i to the game G1,i+1.
This new game will be called G′

1,i. Here we will only describe how to come from
G′
i,1 to Gi+1,1 since it is the only part that will differ from the proof in [BKP14].

Let m be the i-th query of the adversary, since m∗ 6� m there exists a j such
that m∗

j 6= mj and fj(m
∗
j) 6= fj(0). In this configuration the adversary not more

information about xj than in a standard affine MAC. We can thus reuse the
argument of the original proof: there is an information-theoretic argument to
show that u − x′0 is uniformly random. To simplify our proof we assume that
the adversary A knows x′0 and all xl with l 6∈ {0, j}. He may also know B⊤x0
and B⊤xj . We will show that A is unable to guess xj and x0, A has to solve
the following matrix equation:

B⊤x0
B⊤

h0
u− x′0

 =

B⊤ 0
0 B⊤

h · Ik+1 m∗
jh · Ik+1

t⊤ mjt
⊤

︸ ︷︷ ︸
M

·

(
x0
xj

)
(3.1)

The u−x′0 is linearly independent from the other rows: t⊤ is independent from
B⊤ because t 6∈ span(B) with probability (q− 1)/q, also mj 6= m∗

j which means

48

that this last row is independent from the rows
(
h · Ik+1 m∗

jh · Ik+1

)
. Thus

this system of equations has not enough equations to be solved e.g. A can not
distinguish between a random and u (except for a probability 1/q).

Finally, we do all the other steps of the proof like in the original proof, and then
we end up with the following lemma.

Lemma 2. For all adversaries A there exists an adversary B with T(A) ≈ T(B)
and AdvMACHPS,Dk

(B)DPR0-CMA(A) ≤ 2qk(AdvDk,GGen(B) + 1/q).

Which leads to the security of the downgradable MAC.

Achieving Secure DIBE

We define the sequence of games G0-G4 as in Figure 3.6. Let A be an adversary
against the PR-ID-CPA security of DIBKEM. G0 is the real attack game.

Initialize: // Games G0-G2, G3-G4

G $← GGen(K); A
$← Dk

skMAC = (B, x0, . . . , xℓ, x
′
0)

$← GenMAC(G)
∀i ∈ J0, ℓK :

Yi
$← Zk×n

p ;Zi = (Y⊤
i | xi) · A ∈

Zn×k
p

di,1 = z⊤i ·B ∈ Zk
p

di,2-n = z⊤i ·B ∈ Zk×n−1
p

di,2-n′ = (A−1)⊤(Z⊤
i B−A⊤xiB)

y′0
$← Zk

p; z
′
0 = (y′0

⊤ | x′
0) ·A ∈ Z1×k

p

pk := ([A]1, ([Zi]1)0≤i≤ℓ, [z
′
0]1)

dk := ([B]2, ([di]2)0≤i≤ℓ)
sk := ((Zi)0≤i≤ℓ, z

′
0)

Return (pk, dk)

USKGen(id): //Games G0-G2, G3-G4

QID = QID ∪ {id}

([t]2, [u]2)
$← Tag(skMAC, id)

v =
∑

i fi(id)Yit+ y′0 ∈ Zk
p

v⊤ = (t⊤
∑

fi(id)Zi + z′0 − u ·A) ·A−1

For i, id[i] = 1:
di,1 = x⊤

i t ∈ Zp

di,2-n = Yit ∈ Zk
p;

d⊤i,2-n = (t⊤Zi − di,1A)A−1 ∈ Z1×k
p

usk[id] := ([t]2, [u]2, [v]2) ∈ Gn
2 ×G1

2 ×Gk
2

udk[id] := ([di]2)id[i]=1 ∈ (G1+k
2)(Ham(id))

Return (usk[id], udk[id])

Enc(id∗): //Games G0, G1-G2 , G2 , G3

r
$← Zk

p

c∗0 = Ar ∈ Zk+1
p

c∗0
$← Zk+1

p

h
$← Zp; c

∗
0

$← Zk
p;

c∗0 := h+A ·A−1c∗0 ∈ Zp

c∗1 = (
∑

i fi(id
∗)Zi)r ∈ Zn

p

c∗1 =
∑

i fi(id
∗)(Y⊤

i | xi)c
∗
0 ∈ Zn

p

c∗1 =
∑

i fi(id
∗)(Zi ·A

−1c∗0 + xi · h)

K∗ = z′0 · r ∈ Zp.

K∗ = (y′⊤0 | x′
0)c

∗
0 ∈ Zp

K∗ = z′0 ·A
−1c∗0 + x′

0 · h

Return K∗ = [K∗]T and C∗ = ([c∗0]1, [c
∗
1]1)

Enc(id∗): //Game G3, G4

h
$← Zp; c

∗
0

$← Zk
p; c

∗
0 := h+A ·A−1c∗0 ∈ Zp

c∗1 =
∑

i fi(id
∗
i)(Zi ·A

−1c∗0 + xi · h)
K∗ = z′0 ·A

−1c∗0 + x′
0 · h

K∗ $← Zp

Return K∗ = [K∗]T and C∗ = ([c∗0]1, [c
∗
1]1)

Finalize(β): //Games G0-G4

Return (id∗ 6� QID) ∧ β

Figure 3.6: Games G0-G4 for the proof

We can see that G1 is simply a rewriting of G0.

49

Lemma 3. Pr[GA
1 ⇒ 1] = Pr[GA

0 ⇒ 1].

Lemma 4. There exists an adversary B1 with T(B1) ≈ T(A) and

AdvDk,GGen(B1) ≥ |Pr[G
A
2 ⇒ 1]− Pr[GA

1 ⇒ 1]|.

Lemma 5. Pr[GA
3 ⇒ 1] = Pr[GA

2 ⇒ 1].

Proof. G3 is simulated without using y′0 and (Yi)0≤i≤ℓ. By Y⊤
i = (Zi−xiA)A−1,

we have

Di = (A−1)⊤(Z⊤
i B−A⊤di) = (A−1)⊤(Z⊤

i −A⊤x⊤i)︸ ︷︷ ︸
Yi

B

di = (A−1)⊤ · (Z⊤
i t−A⊤ x⊤i t︸︷︷︸

di

) = Yit.

as in Game G2. And so, we have [v]2, K
∗ and C∗ are identical to G2.

Lemma 6. There exists an adversary B2 with T(B2) ≈ T(A) and

Adv
dpr0-cma

MAC (B2) ≥ |Pr[G
A
4 ⇒ 1]− Pr[GA

3 ⇒ 1]|

Proof. In G4, we answer the Enc(id∗) query by choosing random K∗. We con-
struct algorithm B2 in Figure 3.7 to show the differences between G4 and G3 is
bounded by the advantage of breaking dpr0-cma security of MAC.

We note that, in games G3 and G4, the values xi and x′i are hidden until the call
to Enc(id∗) (because the adversary is not allowed to query an id such that id∗ �
id). In both games DPR-CMAreal and DPR0-CMArand, we have h = c∗0−AA−1c∗0.

Hence h0 =
∑

fi(mi)xi·(c
∗
0−A·A

−1c∗0) which implies c∗1 is distributed identically
in games G3 and G4. If h1 is uniform (i.e., B2 is in Game DPR0-CMArand) then
the view of A is the same as in G4. If h1 is real (i.e., B2 is in Game DPR-CMAreal)
then K∗ = z′0 ·A

−1c∗0 + x′0 · h, which means the view of A is the same as in G3.

The proof follows by combining Lemmas 3-6.

In this section we compare the schemes obtained by using our instantiation of
DIBE and our new schemes obtained by our transformations and our DIBE. We
end up with the most efficient scheme for full security in the standard model
and under classical hypothesis for WIBE, WKD-IBE and of similar efficiency
for HIBE.

To compare efficiency in a simple way, we choose to consider the case where
the number of patterns is maximal e.g. the size of pattern is equal to 1, thus
the number of patterns is n which is the length of the identity. The value

50

Initialize:

A
$← Dk

([B]2, ([x
⊤
i B]2)0≤i≤ℓ)

$← InitializeMAC

∀i ∈ J0, ℓK:

Zi
$← Zn×k

p ; z′0
$← Z1×k

p

pk := (G, [A]1, ([Zi]1)0≤i≤ℓ, [z
′
0]1)

Return (pk, dk)

Enc(id∗): //only one query

([h]1, [h0]1, [h1]T)
$← Chal(id∗)

c∗0
$← Zk

p; c
∗
0 := h+A ·A−1c∗0 ∈ Zp

c∗1 =
∑

i fi(id
∗)Zi ·A

−1c∗0 + h0

K∗ = z′0 ·A
−1c∗0 + h1

Return K∗ = [K∗]T and C∗ =
([c∗0]1, [c

∗
1]1)

USKGen(id):

QID = QID ∪ {id}

([t]2, [u]2, [T]2, [u]2, ([di]2, [Di]2))
$←

Eval(id)
v⊤ = (t⊤

∑
fi(id)Zi+z′0−u·A)·(A)−1

V = (A−1)⊤(
∑

fi(id)Z
⊤
i ·T−A⊤ · u)

For i, idi = 1:
e⊤i = (t⊤Zi − diA)A−1 ∈ Z1×k

p

Ei = (A−1)⊤(Z⊤
i T − A⊤ · Di) ∈

Zk×µ
p

usk[id] := ([t]2, [u]2, [v]2) ∈
Gn

2 ×G1
2 ×Gk

2

udk[id] := ([T]2, [u]2, [V]2, [ei]2, [Ei]2))
Return (usk[id], udk[id])

Finalize(β):

Return (id∗ 6� QID) ∧ FinalizeMAC(β)

Figure 3.7: Description of B2 (having access to the oracles
InitializeMAC,Eval,Chal,FinalizeMAC for the proof of Lemma 6.

Name |pk| |usk| |C| assump. Sec Loss

WKD [AKN07] n+ 4 n+ 2 2 BDDH
Sel.

standard
O(Lqk)

WKD [AKN07] (n+ 1)n+ 3 n+ 2 2 BDDH
Full

standard
O(qLk)

WKD (via our
DIBE)

4n+ 2 3n+ 5 5
DLin (any
k −MDDH)

Full
standard

O(qk)

WIBE [BDNS07] (n+ 1)n+ 3 n+ 1
(n+

1)n+ 2
BDDH

Full
standard

O(L2qLk)

WIBE (via our
DIBE)

4n+ 2 3n+ 5 5
DLin (any
k −MDDH)

Full
standard

O(qk)

Figure 3.8: Efficiency Comparison Between our
Transformations and Previous Schemes

51

Name |pk| |usk| |C| assump. Loss

HIBE [BBG05] n+ 4 2 + ℓ 5 DLin
sel.

O(n · qk)

HIBE [BKP14] 2n+ 1 11ℓ+ 5 5
DLin (any
k −MDDH)

O(n)

HIBE (via our
DIBE)

4n+ 2 11n+ 5 5
DLin (any
k −MDDH)

O(qk)

Figure 3.9: Efficiency Comparison Between our
Transformations and HIBE schemes

qk corresponds to the number of derivation key oracle requests made by the
adversary7.

Efficiency comparison for HIBE The Figure 3.9 compares the HIBE built
via our DIBE. Our instantiation of DIBE inherits its efficiency from the HIBE
from [BKP14], except we need to artificially double the size of the identities.
Here ℓ is the number of free bits in an identity (the ones to delegate). Note that
for the case of root of the hierarchy e.g. the user with an empty bit string as
identity, ℓ = n.

It should be noted, that while we rely on the same underlying principle, our
scheme is not tightly secure and does not rely on the Naor-Reingold PRF, which
allows to circumvent the worrisome parts of their proofs8.

3.2 Blind IBE and Fragmented IBE

In our idea of mixing IBE and SPHF we found another application: efficient
Blind fragmented IBE9 instantiation which will allow to create an efficient adap-
tive Oblivious Transfer.

3.2.1 Constructing a Blind Fragmented IBKEM from an IBKEM

Shortly speaking a Blind IBKEM is an IBKEM with the possibility to get a
user secret key without the authority knowing which identity is related to the
request. This feature is in fact very interesting when using IBE as a tool. We
will see that in the next chapter 4.3.2.

High-Level Idea: achieving Blindness We now show how to obtain a
BlindIBKEM scheme from any IBKEM scheme. From a high-level point of view,
this transformation mixes two pre-existing approaches.

7In the original version of [AKN07] they include an element in the ciphertext to turn their
scheme into an encryption scheme. Since our scheme is a Key Encapsulation Mechanism we
remove this element when comparing both schemes.

8There is problem in the proof which has not been patched at that moment
9see Definition 12

52

First, we are going to consider a reverse Naor transform [BF01,CFH+07] which
has been described in Section 2.5. At this point we are seeing IBE keys as sig-
nature and we will use the Fischlin [Fis06] round-optimal approach to create
blind signatures. The whole interaction is done in one pass: First, the user
commits to the message, then he recovers a signature linked to his commitment.
For sake of simplicity, instead of using a Non-Interactive Zero-Knowledge Proof
of Knowledge of a signature, we are going to follow the [BFPV11,BPV12] ap-
proach, where thanks to an additional term, the user can extract a signature on
the identity from a signature on the committed identity. This two steps trans-
formation is depicted in Figure 3.10, details will follow in the next paragraph.

 !!! Authority

busk[id]usk[id]

id

B
li
n
d
U
S
K
G
e
n
(m

s
k
,C

;t
)

C
Commit(id; ρ)

Recover(busk[id], ρ)

User
1. A user commits to the targeted

identity id using some random-
ness ρ.

2. The authority possesses an algo-
rithm allowing it to generate keys
for committed identities using its
master secret key msk, and some
randomness t, in order to obtain a
blinded user secret key busk[id].

3. The user using solely the random-
ness used in the initial commit-
ment is able to recover the re-
quested secret key from the au-
thority’s generated value.

Figure 3.10: Generic Transformation of an IBKEM into a Blind
IBKEM (naive approach)

Generic Transformation of an IBKEM into a Blind IBKEM. To blind a
user key request we will use a Smooth Projective Hash Function. We assume
the existence of a labeled CCA-encryption scheme
E = (Setupcca,KeyGencca,Encrypt

ℓ
cca,Decrypt

ℓ
cca)

with an SPHF over a language Lc
id ⊂ X, where Lc

id = {C | ∃ρ such that C =
Encryptℓcca(id;ρ)}, defined by (Setup,HashKG,ProjKG,Hash,ProjHash) onto a
set G (where ℓ is a label defined by the global protocol). The formal descrip-
tion of our BlindUSKGen is described in Figure 3.11. Note that we need a key
derivation function10

KDF to get a long enough bit string to hide the user secret
key.

Remark 4. In this transformation the authority sends every secret key but only
one can be recovered by the user: the one requested. This comes directly form
the property of the SPHF and this is why we make use of this primitive. This

10One can use the Leftover-Hash Lemma [HILL99], with a random seed defined in param

during the global setup, to extract the entropy from v, then followed by a pseudo-random
generator to get a long enough bit-string.

53

• The user computes an encryption of the expected identity id and keeps
the randomness ρ: C = Encryptℓcca(id;ρ)}.

• For every identity id′, the server computes the key usk[id′] along with
a pair of (secret, public) hash keys (hkid′ , hpid′) for a smooth projective
hash function on the language Lc

id′
:

hkid′ = HashKG(ℓ,Lc
id′
, param) and hpid′ = ProjKG(hkid′ , ℓ, (L

c
id′
, param), id′).

He also compute the corresponding hash value
Hid′ = Hash(hkid′ , (L

c
id′
, param), (ℓ, C)).

Finally, he sends (hpid′ , usk[id
′] ⊕ KDF(Hid′)) for every id′, where ⊕ is a

compatible operation.
• Thanks to hpid, the user is able to compute the corresponding projected

hash value H ′
id = ProjHash(hpid, (L

c
id, param), (ℓ, C),ρ). He then recovers

usk[id] for the initially committed identity id since Hid = H ′
id.

Figure 3.11: Generic Construction of
BlindUSKGen(〈(S,msk)(U, id, ℓ;ρ)〉) for a blind IBE

idea of many receiving/one understandable will be reused in this Thesis. We will
generalize this with the concept of OLBE developed in the Section 5.1.

Theorem 2. If IBKEM is a PR-ID-CPA-secure identity-based key encapsulation
scheme and E a labeled CCA-encryption scheme compatible with an SPHF, then
BlindIBKEM is leak free and weak blind.

Proof. First, BlindIBKEM satisfies leak-free secret key generation since it relies
on the CCA security on the encryption scheme, forbidding a user to open it
to another identity than the one initially encrypted. Furthermore, the pseudo-
randomness of the SPHF ensures that the blinded user key received for id is
indistinguishable from random if he encrypted id′ 6= id. Finally, the weak
blindness also relies on the CCA security on the encryption scheme, since an
encryption of id is indistinguishable from a encryption of id′ 6= id.

Generic Transformation of a Fragmented IBKEM into a Blind Frag-
mented IBKEM. Now we go a step further and have a look at Fragmented IBE
11. In a Fragmented IBE a user key is made of pieces from the list (usk[0], usk[0, id0], . . . , usk[m−
1, idm−1]) if idi is the i-th bit of the identity id (for example usk[id] = usk[0] ·∏n

i=0 usk[i, idi]). For Fragmented IBE we are able to improve the efficiency of
the Blind Fragmented IBKEM transformation: instead of having a response of
the authority linear in the number of user’s secret key we will be linear in the
number of pieces of key. This new communication cost is logarithmic in the
number of user’s secret key. We describe this transformation in figure 3.12.

For security reasons, one cannot give directly the evaluation value, but as we are
considering the sum of the evaluations for each bit, we simply add a Shamir-like
secret sharing, by adding randomness that is going to cancel out at the end.

11They were defined in [BKP14]. Affine IBE derive their name from the fact that only affine
operations are done on the identity bits (no hashing, square rooting, inverting... are allowed).

54

• The user computes a bit-per-bit encryption of the requested line iden-
tity id and keeps the randomness ρ: {C = Encryptℓcca(id;ρ)}.

• The server computes a fragmented version of all the keys usk[id′], i.e. all
the values usk[i, b] for i from 0 up to the length m of the keys and b ∈
{0, 1}. He also computes a pair of (secret, public) hash keys (hki,b, hpi,b)
for a smooth projective hash function on the language Lc

i,b: “The i-th bit
of the value encrypted into C is b”, i.e. hki,b = HashKG(ℓ,Lc

i,b, param) and
hpi,b = ProjKG(hki,b, ℓ, (L

c
i,b, param)). He also computes the correspond-

ing hash value Hi,b = Hash(hki,b, (L
c
i,b, param), (ℓ, C)) and chooses ran-

dom values zi. Finally, he sends, for each (i, b), (hpi,b, busk[i, b]), where

busk[i, b] = usk[i, b]⊕ KDF(Hi,b)⊕ zi, together with Z = usk0 ⊖
(⊕

i zi

)
,

where ⊕ is a compatible operation and ⊖ its inverse.
• Thanks to the hpi,idi for the initially committed identity id, the user is

able to compute the corresponding projected hash value
H ′

i,idi
= ProjHash(hpi,idi , (L

c
i,idi

, param), (ℓ, C),ρ),
that should be equal to Hi,idi for all i. From the values busk[i, idi], he
then recovers usk[i, idi]⊕ zi. Finally, with the operation(⊕

i(usk[i, idi]⊕ zi)
)
⊕ Z, he recovers the expected usk[id].

Figure 3.12: Generic Construction of
BlindUSKGen(〈(S,msk)(U, id, ℓ;ρ)〉) from a Blind affine IBE

3.2.2 Pairing-Based Instantiation

Affine Bit-Wise Blind IBE. We are going to use the family of IBE from
[BKP14] described in the following picture (Figure 3.13), which is their instan-
tiation derived from a Naor-Reingold MAC12. In the following, hi() are injective
deterministic public functions mapping a bit to a scalar in Zp.

We propose a blind user key generation in Figure 3.14.

To fit the framework we will use in the next chapter, we are going to consider
the equivocable language of each chameleon hash of the identity bits (ai, bi,mi

),
and then a Cramer-Shoup like encryption of b into d (more details in Figure
2.5). We denote this process as Har in the following protocol, and by LHar,i,idi

the language on identity bits. And then we will apply the SPHF described in
figure 2.14. We thus obtain the following security results.

Theorem 3. This construction achieves both the weak Blindness, and the leak-
free secret key generation requirements under the k −MDDH assumption.

Proof. Given an adversaryA against the weak Blindness security or the leak-free
secret key generation of the blinded scheme, we are going to build an adversary

12For the reader familiar with the original result, we combine x, y into a bigger y to lighten
the notations, and compact the (x′

i, y
′

i) values into a single y′ as this has no impact on their
construction.

55

Setup(K):

A
$← Dk, B = A

For i ∈ J0, ℓK : Yi
$← Zk+1

p ;Zi = Y ⊤
i ·A ∈ Zk

p

y′
$← Zk+1

p ; z′ = y′
⊤ ·A ∈ Zk

p

mpk := (G, [A]1, ([Zi]1)i∈J0,ℓK, [z
′]1)

msk := (Yi)i∈J0,ℓK, y
′

Return (mpk,msk)

USKGen(msk, id):

s
$← Zk

p, t = Bs

w = (Y0 +
∑ℓ

i=1 hi(idi)Yi)t+ y′ ∈ Zk+1
p

Return usk[id] := ([t]2, [w]2) ∈ Gk+k+1
2

Enc(mpk, id):

r
$← Zk

p

c0 = Ar ∈ Zk+1
p

c1 = (Z0 +
∑ℓ

i=1 hi(idi)Zi) · r ∈ Zp

K = z′ · r ∈ Zp.
Return [K]T
and C = ([c0]1, [c1]1) ∈ Gk+1+1

1

Dec(usk[id], id,C):

Parse usk[id] = ([t]2, [w]2)
Parse C = ([c0]1, [c1]1)
K = e([c0]1, [w]2) · e([c1]1, [t]2)

−1

Return K ∈ GT

Figure 3.13: A fragmented IBKEM [BKP14].

• First flow: U starts by computing

ρ
$← Z1+4×ℓ

p ,

a, d = Har(id, ℓ; ρ) ∈ Zℓ
p × Z

2×(k+3)ℓ
p ,

Sends C = ([a]1, [d]2) to S
• Second Flow: S then proceeds

s
$← Zk

p, t = Bs, f
$← Zℓ×k+1

p ,
For each i ∈ J1, ⌈log n⌉K, b ∈ J0, 1K:
hki,b = HashKG(LHar,i,b, C)
hpi,b = ProjKG(hki,b,LHar,i,b, C)
Hi,b = Hash(hki,b,LHar,i,b, C)
ωi,b = (bYi)t+ fi +Hi,b

Then sets w0 = Y0t + y′ −
∑ℓ

i=1 fi ∈
Zk+1
p

Returns busk :=
([t]2, [w0]2, {[ωi,b]2}, {[hpi,b]2})

• BlindUSKGen3:
U then recovers his key
For each i ∈ J1, ℓK:
H ′

i =
ProjHash(hpi,idi ,LHar,i,idi , C, ρi)
wi = ωi,idi −H ′

i

w = w0 +
∑ℓ

i=1 wi

And then recovers usk[id] :=
[t]2, [w]2

Figure 3.14: BlindUSKGen(〈(S,msk)(U, id, ℓ;ρ)〉).

56

B against the PR-ID-CPA security of the initial IBE.

From the challenge, B receives the parameter from an IBE scheme mpk, has
access to a user key generation oracle USKGenO, and for a given fresh id∗, a
tuple (K∗,C∗) whose consistency he needs to decide.

In the initial game G0, B behaves normally, generating mpk,msk, and answering
A blinded request honestly.

G1 In this game, B using the extraction procedure on the CCA commitment,
is able to recover the identity id queried by A. If for a bit i, there is
two valid openings, then A broke the collision resistance property of the
underlying chameleon hash (and so MDDH) and B aborts. Thus this game
is equivalent to the previous one under k −MDDH.

G2 In this game, B starts altering his answer. It is able to recover the identity
id queried byA with the extraction procedure. Now, for each bit of identity
there is one binary value not committed ¯idi. For these bits B’s answer
will be modified and sets to a random values ωi, ¯idi

$← Zk+1
p . Under the

smoothness of the underlying smooth projective hash function, this game
is indistinguishable from the previous one.

G3 Now B continues to extract the requested id, picks random f
$← Zℓ×k+1

p ,

and sets w0 = usk[id] −
∑ℓ

i=1 fi, then for i ∈ J1, nK, ωi,idi = fi + Hi,idi

while ωi,idi
$← Zk+1

p as before. If B, does not recover a valid identity, he
simply only sends dummy values.

This game is indistinguishable from the previous one, as this is just a
rewriting of the vector fi. (Noting f̂i the old one, we have fi = f̂i−(idiYi)t
which follows the same distribution).

G4 B can now forget about msk, since the user secret key will be whole and
hidden in w0. When receiving a BlindUSKGen request, B extracts the
request identity, and if it is not ⊥ he forwards it to the USKGenO oracle,
and plugs the received usk[id] as before.

Now A can request a challenge from B, B forwards this request to the initial
non-blinded IBE challenge for a fresh id∗, and returns the challenge (K∗,C∗) to
A which leads to the conclusion.

For sake of generality, any bit-wise affine IBE could work (like for example
Waters IBE [Wat05]). We preferred here a tightly secure IBE giving an even
more practical scheme.

57

Chapter 4

Applications of Identity-based

Encryption

In this chapter we will see how Identity-based encryption can be used in different
ways. We have already seen that IBE can be transformed into a signature. By
adding one more layer of IBE (using HIBE of depth 2) we are able to create
Identity-based Signature. This is a known construction [CFH+07] but we will
use it in the particular context of constructing Identity-based Designated Verifier
Signature (along with other primitives). In a second part we will use our new
primitive namely Downgradable Identity-based Encryption and achieve what
this primitive has been made for: construct an Attribute-based Encryption
scheme from a variant of Identity-based Encryption. At the end of this chapter
we describe a construction of adaptive Oblivious Transfer. This technique has
already been used but we managed to highly improve the communication cost
of this result, achieving a generic construction from any fragmented IBE. We
end up with a very efficient and practical adaptive OT (which was not done
before).

4.1 Identity Based Designated Verifier Signature

The first section of this chapter is about Designated Verifier Signature (DVS).
Our objective is to achieve Identity-based DVS. First we will describe a generic
way to construct DVS. In a second time we will show how to move from the
normal setup to the Identity-based one. In this first part we will propose a
generic way to construct DVS then give an efficient new instantiation.

58

4.1.1 Definition and Security

The principle of DVS is to allow a signer to sign a message that only one1 chosen
user can verify. We will here describe the scheme as a universal designated
verifier signature introduced in [SBWP03].

There are many applications to a such primitive, for example it has the abil-
ity to provide a fully deniable email authentication solution where parties can
exchange authenticated mail without non repudiation evidence. Thanks to the
use of DVS, both parties involved in a mail conversation can authenticate the
party they are talking to and are assured that no proof of this conversation can
be disclosed. Indeed, if an attacker can gain access to the email inboxes of the
trusted parties, he cannot provide a proof of authenticity of the contained infor-
mation when disclosing emails. ID-based cryptography usage eases the overall
process with the reduction of key exchanges needed. Another application is the
use of DVS for cloud-based consultation of digitally signed documents. For in-
stance, Electronic Health Records (EHR) and Personnal Health Records (PHR)
are now widely deployed in western societies. With this feature, the potential
leakage of medical records cannot result in blackmail or insurance fraud as cyber
criminals cannot provide a proof of authenticity for the stolen data. Of course,
the potential embarrassment caused by the disclosure of medical information
without authenticity verification cannot be avoided.

Definition 24. A Universal Designated Verifier Signature Scheme DVS consists
of seven PPT algorithms (Setup,KGS,KGV, Sign,Verify,Des,DesV) with the fol-
lowing properties:

• Setup(1K): where K is the security parameter, generates the global param-
eters param of the scheme.

• KGS(param): outputs a signing key pair (sk1, pk1) for the signer.

• KGV(param): outputs a verifier key pair (sk2, pk2) for the verifier.

• Sign(sk1,M): outputs a signature σ on M publicly verifiable with pk1.

• Verify(pk1,M, σ): checks the validity of σ.

• Des(σ,M, pk1, pk2): outputs a designated verifier signature σ̂ for the ver-
ifier.

• DesV(σ̂,M, sk2, pk1): checks the validity of the designated signature.

Using only Setup,KGS, Sign, and Verify we have a simple digital signature scheme.

A Universal Designated Verifier Signature Scheme should satisfy the following
properties:

1it can easily be extended to a set of multiple users, for example it can be possible to use
many times the algorithm Des

59

• The simple signature scheme (Setup,KGS, Sign,Verify) should be unforge-
able (definition at section 2.4.1).

• Only the signer or the designated verifier should be able to generate a veri-
fiable message signature pair for (M, σ̂)2. This is called DV-Unforgeability
and expressed by the following security experiment (ExpUDVSdvuf,A) for an ad-
versary A, where SM depicts the set of previously signed messages:

ExpUDVSdvuf,A(K):

param← Setup(1K)

(sk1, pk1)← KGS(param)

(sk2, pk2)← KGV(param)

(M, σ̂)←− AOSign,OVerify(pk1, sk2)

Return DesV(σ̂,M, sk2, pk1) if M 6∈ SM

The probability of success against this game is denoted by

SuccUDVSdvuf,A(K) = Pr[ExpUDVSdvuf,A(K) = 1],

• An adversary should not be able to convince a third party about the valid-
ity/invalidity of a designated signature, this is called Non-transferability3.
In terms of advantage it means that an adversary must have at best a negli-
gible advantage in distinguishing the two following distributions. We note
S the signature space, and

$← to indicate a random uniform sampling:

∆0 =

(M, σ̂)

(sk1, pk1), (sk2, pk2)← KGS,KGV
σ̂ = Des(Sign(sk1,M),M, pk1, pk2)

∆1 =

(M, σ̂)

(sk1, pk1), (sk2, pk2)← KGS,KGV

σ̂
$← S.

Throughout our security experiments, we will use different oracles:

2We allow the verifier to be able to create a such signature because if he was not able to
then by giving his secret key, he would be able to prove to someone that the signer signed the
message.

3This is the key property of this primitive

60

• OSign takes as input M, a signer public key pk1 and returns a signature
σ on this message and adds M to the set of already signed message SM.

• OVerify takes as input a designated verifier signature σ̂, a message M and
a verification key and checks their validity.

Remark 5. The hard-to-get property is the Non-transferability. It will force
us to use heavy tools to satisfy this property as we describe in the next paragraph.
Note that at this point DVS and standard digital signature are very different when
proving the security: for a standard digital security we can rely on computational
problem since the adversary has to produce a value. In the case of the DVS the
Non-transferability property does not force the adversary to produce anything
since it is an indistinguishably between two distributions. It means that we will
need to rely the security on a decisional assumption.

4.1.2 A New Construction

It is natural to start from a signature to build a DVS since the inner scheme
should satisfy regular signature’s security property (e.g. Unforgeability). This
is our starting point, but now we want to transform this signature to have the
Non-transferability and the DV-Unforgeability properties. We will interest
in the use of SPHF along with an extractable commitment (an encryption scheme
for simplicity). It is an interesting approach because the verifier will have to
compute the value (using the SPHF’s Hashing algorithm) and verify the equality
with the value sent by the signer. Thus the verifier will not be able to convince
a third party that he owns a signature on a precise message from the signer
because it could have compute it itself. We will detail this in the following.

Starting from the result presented by Blazy et al. [BPV12], we achieve UDVS

in 3 steps:

• The signer will sign M using sk1 resulting in a signature σ.

• The signer then encrypts σ with an encryption key ek and sends it to the
verifier (ek will be a public parameter and no user knows the corresponding
private key).

• Both the sender and the verifier will use a SPHF on the language L the set
composed of encrypted valid signatures from the signer on the messageM.
In our proposition, the Universal Designated Verifier keys are generated
thanks to the SPHF, namely sk2 = hk and pk2 = hp. The signature is
valid if the verifier receives the same value as the one he computed.

We describe this scheme in the Figure 4.1.

High Level Security Analysis We briefly gives security sketches for the vari-
ous expected security properties, and show how they reduce in a black-box way
to the security of the underlying building blocks.

61

Sender
• σ := Sign(sk1,M)

• C := Encrypt(σ, ek; r)

• P := ProjHash(pk2,L, C, r)

Verifier

• H := Hash(sk2,L, C)

• Checks P ?= H

σ̂ = (C,P)

Figure 4.1: Universal Designated Verifier Signature based on
SPHF

Theorem 4. Under the unforgeability of the signature scheme, the proposed
Universal Designated Verifier Signature construction is Unforgeable.

Theorem 5. Under the unforgeability of the signature scheme, and the Smooth-
ness of the SPHF, the proposed Universal Designated Verifier Signature con-
struction is DV-Unforgeable.

Theorem 6. Under the indistinguishability (IND-CPA) of the encryption scheme
and the pseudo randomness of the SPHF, the proposed Universal Designated Ver-
ifier Signature construction is Non-Transferable.

Proof of Unforgeability

The inner signing mechanisms of the UDVS is kept unchanged from the under-
lying signature scheme hence the security remains the same.

Proof of DV-Unforgeability

An adversary A breaking the DV-unforgeability has a non-negligible probability
to produce a valid tuple (M, σ) for a fresh unsigned message (for example
verifier).

Proof. We will construct an adversary B against the unforgeability of the sig-
nature scheme. For signatures, B uses a signing oracle from the initial signature
scheme, this is indistinguishable from the real game, and he knows the decryp-
tion key sk1 associated with the encryption key in the common reference string.

When receiving the challenge signature, first B check if the message is fresh,
and the pair valid. In this case, he parses σ̂ in (C,P). Under the smoothness
of the underlying SPHF, C is a valid encryption of a valid signature on M∗ for
the given public key. Using sk1, B can recover a fresh σ∗ on M∗, and so breaks
the unforgeability of the inner signature scheme.

Proof of Non-Transferability

62

An adversary A breaking the Non-Transferability has a non-negligible proba-
bility to distinguish a valid designated signature from an invalid one. We are
going to show how to build a simulator B breaking the IND-CPA security of the
underlying encryption scheme.

Proof. For signatures, B uses a signing oracle from the initial signature scheme,
this is indistinguishable from the real game, and he knows the decryption key
sk1 associated with the encryption key in the common reference string.

We are going to proceed in a sequence of games moving from G0 where the
adversary is presented with a valid designated signature, to G2 where he sees a
random value.

G0 This is the real game, the signer queries a signature to the signing oracle,
encrypts it, and computes honestly the projective hash for the designated
identity.

G1 The signer now picks a random value for the projected hash, under the
pseudo-randomness of the SPHF (implied by definition by the indistin-
guishability of the encryption), this is indistinguishable from the valid
value.

G2 The signer now encrypts a random value, once again under the indistin-
guishability of the encryption, this is indistinguishable from the previous
game.

Hence
AdvNT

A ≤ 2 ∗ Advind-cpaA

Instantiation The main difficulty to build this scheme is to find a SPHF on the
right language i.e. encryptions of a valid signature onM. Here we use the linear
encryption over Waters signature [Wat05] followed by the SPHF4 from [BPV12] .
In this instantiation we are able to combine the encryption and the signature in
a more efficient scheme by combining these primitives while reusing part of the
randomness (see Figure 4.2). Reusing the randomness s allows to have σ2 = C2,
this redundancy reduces the overall communication cost by one element without
altering the security proof. This optimization is called Sign&Crypt leads to
a slightly modified version of the language L 5. We want to stress out that
this new primitive is different from both the Signcryption introduced by Zheng
in [Zhe97] and Signature on Randomizable Ciphertext introduced by Blazy et al.
in [BFPV11].

4see Figures 2.3 , 2.10 and 2.13 respectively
5L := WLin(ek, pk,M) denotes the set of elements computed as Sign&Crypt(M, ek, sk):

this is the set of encryption of valid signature of the message M with the optimization in the
writing

63

Setup(1K)

Gg = (p,G, g, h, ν,GT , e)← GGen(1K)
ek← Lin.KeyGen(Gg)

U = (u0, . . . , uk)
$← Gk+1

param = (Gg, ek, U)

KGV(param)

sk2 ← HashKG(Lek,pk1)
pk2 ← ProjKG(hk,Lek,pk1)
Return (sk2, pk2)

KGS(param)

Return
(sk1, pk1) := Wat.KeyGen(param)

Sign(M, sk1, pk2)

σ ←Wat.Sign(sk1,M, s)
C ← Lin.Encrypt(ek, σ1, (r, s))
P ← ProjHash(pk2,L, C, r)
Return (C,P)

Verify(sk2,L, C, P)

H ← Hash(sk2,Lek,pk1 , C)
Return 1 if H = P and 0 otherwise.

Figure 4.2: Instantiation of Sign&Crypt

Additional Properties: In fact, the scheme is more than a mere universal
designated verifier signature. By giving the decryption key dk to an authority
we allow it to recover a standard signature. Thus, our UDVS scheme is both
undeniable and convertible. The undeniability is achieved because the signer
can not deny that he signed a message. The convertibility comes from the fact
that the authority is able to transform a designated signature into a regular
signature.

Security Proof of the SPHF over the Sign&Crypt

Theorem 7. This Smooth Projective Hash Function (Figure 2.13) is smooth.

Proof. Let us show that from an information theoretic point of view, v =
Hash(sk2;L, C) is unpredictable, even knowing hp, when Σ is not a correct
Sign&Crypt, in other words C = (C1 = Y r

1 , C2 = Y r2
2 = σ2, C3 = νtσ1),

for t 6= r1 + r2. (We stress that every incorrect tuple can be written like this)

We recall that we earlier defined Hash(hk,L,W) = H := e(C1, ν)
x1 ·(e(C3, g)/(e(h, pk1)·

e(νF(M), C2)))
x2 = e(C1, ν)

x1 · e(ν, gt/C2).

If we denote Y1 = gy1 , ν = gy3 , and consider the discrete logarithm in GT we
have: (

log pk2
logH

)
=

(
y1 1

r1y1y3 (t− r2)y3

)
·

(
x1
x2

)

The determinant of this matrix is non-zero iff C does not belong to the language
in other words when (t 6= r1 + r2). So H is independent from pk2 and C.

4.1.3 Moving To The Identity-based Context

Generic Approach Obviously to move in the identity-based setting we are
going to transform the building blocks into an identity-based signature (IBS),
and an identity-based SPHF (ID-SPHF). Using identity-based building blocks

64

we are able to construct IDDVS the same way we constructed DVS, it is describe
in Figure 4.3.

Setup(K)

param← GGen(K)
mpk1,msk1,mdk1 = HIBKEM.Gen(K)
mpk2,msk2 = ID-SPHF.Setup(K)

KGS(id1,msk1)

Return
sk1, dk1 := HIBKEM.USKGen(msk1, id1)

KGV(id2,msk2)

Return
sk2 := ID-SPHF.USKGen(msk2, id2)

Signd((sk1, dk1),M, (mpk2, id2))

σ ← HIBKEM.USKDel(mdk1, sk1,
dk1, id1,M)
C,P ← ID-SPHF.Encap(mpk2, id2;σ)
Return (C,P)

Verify(msk2,L, C, P, id1)

H ← ID-SPHF.Decap(msk2, C)
Return 1 if H = P and 0 otherwise

Figure 4.3: ID-DVS from ID-SPHF and HIBKEM

The security will not be different from the scheme in a standard setting:

Theorem 8. Under the respective security of the HIBKEM and the ID-SPHF, the
Designated Verifier Signature is unforgeable, DV-unforgeable and non-transferable.

Sketch of Proof: An adversary breaking the (DV)-unforgeability of the ID-DVS
either breaks the smoothness of the ID-SPHF (by sending an invalid inner sig-
nature with an adapted proof), or the unforgeability of the IBS (by sending a
forgery of the inner signature), and so the indistinguishability of the HIBKEM.

Identity-based Signature The difficulty thus lies in the constructions of these
Identity-based primitives. We have another constraint, the primitives chosen
have to be compatible. For the signature scheme, we use the transformation from
a Hierarchical Identity-based Key Encapsulation Mechanism scheme (HIBKEM)
to an IBS [CFH+07]. The concept is quite simple, the signature from idi on M
will be the user secret key usk[idi||M] derived from usk[idi]. Thus the verification
is made by decrypting a dummy message encrypted for this new identity.

We supersede the SPHF in the previous approach by an ID-SPHF to achieve
ID-DVS described in Figure 4.3. Roughly speaking, the two primitives will be
compatible because the SPHF will implicitly verify the signature by computing
pairings on the commitment of the signature.

Hierarchical ID-based Key Encapsulation: We use the one presented in
[BKP14]. In the present scheme (see Figure 4.4), we only consider a hierarchy
of depth 2 which avoids the need to rerandomize the delegation key6.

Identity-based Designation ID-based Smooth Projective Hash Func-

6There is a potential flaw/imprecision in the original proof around the simulation of the
randomization of the delegation term, However, this does not arise here as we consider only
one delegation step.

65

Gen(K):

A
$← Z2×1

p ;B
$← Zp

For i = 1, . . . , 2ℓ :
Yi

$← Z2
p;Zi = Y⊤

i ·A ∈ Zp

Ei = Yi ·B ∈ Z2
p

y′0
$← Z2

p; z
′
0 = y′0

⊤ ·A ∈ Zp

pk := (G, [A]1, ([Zi]1)0≤i≤ℓ, [z
′
0]1)

dk := ([B]2, ([Ei]2)0<i≤2ℓ)
sk := (B, (Yi)0≤i≤ℓ, y

′
0)

Return (mpk1 = (pk, dk),msk1 = sk)

USKGen(msk1, id1 ∈ ID):

t ∈ Zp

v =
∑ℓ

i=1 fi(id1)Yit+ y′0 ∈ Z2
p

For i ∈ J0, ℓ− 1K:
ei = Yℓ+it ∈ Z2

p

usk[id1] := ([t]2, [v]2) ∈ G2 ×G2
2

udk[id1] := ([ei]2)ℓ<i≤2ℓ ∈ (G2
2)

ℓ

Return sk1 = (usk[id1], udk[id1])

USKDel(dk, sk1, id1,M):

ˆid1 := id1||M

v̂ = v +
∑2ℓ

i=ℓ+1 fi(
ˆid1)ei ∈ Z2

p

s′
$← Zp, t

′ = t+Bs′ ∈ Zp

v′ = v̂ +
∑2ℓ

i=1 fi(
ˆid1)Eis

′ ∈ Z2
p

usk[id′] := ([t′]2, [v
′]2) ∈ G2 ×G2

2

Return σ = usk[ˆid1]

Enc(mpk1, id1):

r
$← Zp; c0 = Ar ∈ Z2

p

c1 = (
∑2ℓ

i=1 fi(id1)Zi) · r ∈ Zp

K = z′0 · r ∈ Zp.
Return K = [K]T and C = ([c0]1, [c1]1)

Dec(usk[ˆid1], ˆid1,C):

Parse usk[ˆid1] = ([t]2, [v]2)
Parse C = ([c0]1, [c1]1)
K = e([c0]1,

[
v
]
2
) · e([c1]1, [t]2)

−1

Return K ∈ GT

Figure 4.4: HIBKEM under SXDH (k −MDDH for k = 1).

tion

We are now going to describe such a compatible ID-based Hash Proof System,
which is inspired from the one in the penultimate appendix of [BKP14], except
we need some extra tweaking to be compatible with a pairing based verification.

In [BKP14], they presented an ID-Hash proof system based on SXDH. We note
that Setup,USKGen,Encap and Decap are the same as in HIBKEM from earlier
and Encap∗ returns a random ciphertext C from the ciphertext space CS = G3

1.
Correctness of ID-SPHF follows from the correctness of the underlying HIBKEM.

Revisiting the techniques from [BBC+13a], one can extend their construction
to handle language more complex like encryption of elements α ∈ L. The
language corresponding to valid signature is the set of solutions to a pairing
product equation which requires some extra care. We need to supersede the
USKGen in the ID-SPHF to be compatible with the verification equation of the
inner signature. For that, instead of computing t directly in the ID-SPHF the
authority receives the values Zi from the HIBKEM, and also sends t′, a set of
[tZi]1.

To sign, a user first computes σ1 = ti, σ2 =
∑

id′iYiti + y′. He then uses the
ID-SPHF to hide t, for user j, as c = (Gs,

∑
idjWjs+

∑
id′iZiti) and P = [w′s]2.

User j checks the validity with [c⊤0 vj − c⊤1 tj − P + (
∑

id′iZiti)
⊤tj]T

?= 1T , this
is done via the ID-SPHF presented in Figure 4.5.

We added some elements compared to the original ID-SPHF but the scheme

66

Setup(K):

G
$← Z2×1

p

For i = 1, . . . , ℓ : Xi
$← Z2

p;Wi =

X⊤
i ·G ∈ Zp

x′ $← Z2
p;w

′ = xi
⊤ ·G ∈ Z2

p

mpk2 := (G, [G]2, ([Wi]2)1≤i≤ℓ, [w
′]2)

msk2 := ((Xi)1≤i≤ℓ, x
′)

Return (mpk2,msk2)

USKGen(msk2, id2):

[t]2
$← Zp

v =
∑ℓ

i=0 id2,iXit+ x′
i ∈ Z2

p

Return sk2 := ([t]1, [v]1) ∈ G3
1

Encap(mpk2, id2;α):

r
$← Zp

c0 = Gr ∈ Z2
p

c1 = (
∑ℓ

i=0 id2,iWi) · r + α ∈ Zp

K = z′i · r ∈ Zp

Return C = ([c0]1, [c1]2) and K = [K]T

Encap∗(mpk2, id2):

(c0, c1)
$← Z3

p

Return C = ([c0]2, [c1]2) ∈ G3
2

Decap(sk2,C):

Parse sk2 = ([t]1, [v]1)
Parse C = ([c0]2, [c1]2)
K = [c0v − (c1 − α)t]T
Return K ∈ GT

Figure 4.5: Example of an ID-based HPS for the language of
encryption.

remains secure since this elements lies in the span of those already given in the
original scheme. Under the Self Random Reducibility of the SXDH assumption
those extra elements can be simulated.

In terms of communication cost , we manage to keep a lightweight signature
made of 5 group elements under SXDH, plus a 128 bits string while we keep a
high level security. It is hard to compare with the state of the art for an ID-DVS
since they are almost all proven secure in the random oracle model.

Additional properties

The obtained signature in the previous part is a little more than a simple
ID-DVS, and reveals to possess various interesting properties. The signature
is fully randomizable. So in case a user A is not able to reach B directly, he can
send something to an intermediate proxy C which will be unable to learn the
validity of the signature. Then C is able to fully randomize it before sending it
to user B who will be able to learn that it is a signature from A. This would, for
instance, allow to hide metadatas in communication preventing competitors to
learn that a given enterprise is communicating with a prospective government.

The signature is also an Undeniable Signature as the ID-SPHF master authority
can revoke the obfuscation of a given signature, and determine whether it is
valid or not. It is interesting to note, that the HIBKEM authority has no power
at this step, meaning that while the Judge has to be unique (e.g. the one
with the power of revealing which has signed the message), there can be many
sub-authorities in charge of signature (e.g. the HIBE authorities).

67

4.2 Attribute-based Encryption from Downgradable
IBE

Beyond the Notion of Identities, a Step Toward ABE

In an IBE the idea is to describe any user by a bit string. Mail addresses are
a classical example. Looking at an address: Alice@etu.crypto-uni.edu, one can
see that identities englobes some kind of attributes. The user is a student in
the university "crypto". From this, it seems natural to extend the construction
of IBE to ABE.

This bring us to the link between WIBE and Attribute-based Encryption: using
the example of Alice’s mail address one can encrypt for every user of the univer-
sity using the identity "*...*crypto-uni.edu". The problem with this approach
is that WIBE are not practical enough to be used. Moreover an identity repre-
senting a lot of attributes could be quite big and thus leads to big ciphertext.
Instead we propose to use DIBE and rethink the building of the identity string:
now each bit will refer to one attribute. Following our example with Alice, her
identity is now a bit string made of 0s for every bits but the ones corresponding
to: {university=crypto, rank=student}. The power of this re-conceptualization
lies in the construction of the DIBE, in the DIBE a bit set to 0 will not express
in the user secret key and thus only the 1s will matter. A user is now completely
defined by what he owns and what he does not own.

4.2.1 Definitions and Security

To define Attribute-based Encryption we need to first define what is an access
structure7:

Definition 25 (Access Structure). An access structure F is a collection non-
empty subsets of the universe of attributes U . For simplicity we will index our
attributes. Thus we are able to express access structure as follow: F ⊆ 2U \ {0}.

Definition 26 (Attribute-based Encryption). An Attribute-based encryption
(ABE) scheme ABE consists of four PPT algorithms ABKEM = (Setup,USKGen,
Enc,Dec) with the following properties.

• The probabilistic key generation algorithm Setup(K) returns the (master)
public/secret key (pk, sk). We assume that pk implicitly defines a message
space M, an Attribute space U , and ciphertext space CS.

• The probabilistic user secret key generation algorithm USKGen(sk,A) that
takes as input the master secret key sk and a set of attributes A ⊂ U and
returns the user secret-key usk[A].

• The probabilistic encryption algorithm Enc(pk,F,M) returns a ciphertext
C ∈ CS with respect to the access structure F.

7In our case it will be a boolean formula in Disjunctive Normal From (DNF) it means that
the formulae is made of disjunction of conjunction of attribute

68

Procedure Initialize:

(pk, sk)
$← Setup(K)

Return pk

Procedure USKGen(A):

QA ← QA ∪ {A}

Return usk[A]
$← USKGen(sk,A)

Procedure Enc(F∗): //one query

(sk∗,C∗)
$← Enc(pk,F∗,M∗)

C∗ $← CS

Return (C∗)

Procedure Finalize(β):

Return (∀A ∈ QA,A does not
verify F) ∧ β

Figure 4.6: Security Games PR-A-CPAreal and PR-A-CPArand (boxed)
for defining PR-A-CPA-security.

• The deterministic decryption algorithm Dec(usk[A],F,A,C) returns the de-
crypted message M ∈M or the reject symbol ⊥.

For perfect correctness we require that for all K ∈ N, all pairs (pk, sk) generated
by Setup(K), all access structure F, all set of attribute A ⊂ U satisfying F, all
usk[A] generated by USKGen(sk,A) and all C output by Enc(pk,F,M):

Pr[Dec(usk[A],F,A,C) = M] = 1.

Like before, we encompass the classical security hypotheses for an ABE, with a
PR-A-CPA one as described in Figure 4.6.

Definition 27 (PR-A-CPA Security). An attribute-based key encapsulation scheme
ABKEM is PR-A-CPA-secure if for all PPT
A , AdvPR-A-CPAABKEM (A) := |Pr[PR-A-CPAA

real ⇒ 1] − Pr[PR-A-CPAA
rand ⇒ 1]| is

negligible.

Note that we distinguish two types of ABE: the Key Policy ABE (KP-ABE)
and the Ciphertext Policy ABE (CP-ABE). The former allows to encrypt for
attributes and the user can decrypt if the attributes verify his personal policy
lying in his user secret key. The latter is way more practical because the policy
lies in the ciphertext, thus the policy can be adapted at every new encryption
to target different users. In this thesis we will only talk about CP-ABE.

4.2.2 Transformation from DIBE to ABE

In a usual notion of (ciphertext-policy) ABE, a key is associated with a set A of
attributes in the attribute universe U , while a ciphertext is associated with an
access policy F (or called access structure) over attributes. The decryption can
be done if A satisfies F. We can see that IBE is a special case of ABE where
both A and F are singletons.

In this thesis, we confine ABE in the two following aspects. First, we restrict
the universe U to be of polynomial size in security parameter; this is often called

69

small-universe ABE (as opposed to large-universe ABE where U can be of super
polynomial size.). Second, we allow only DNF formulae in expressing policies
(as opposed to any boolean formulae, or equivalently, any access structures).

Our idea for obtaining a (small-universe) ABE scheme for DNF formulae from
any DIBE scheme is as follows. For simplicity and without lost of generality, we
set the universe as U = {1, . . . , n}. We will use DIBE with identity length n.
For any set S ⊆ U , we define idS ∈ {0, 1}

n where its i-th position is defined by

idS [i] :=

{
1 if i ∈ S

0 if i 6∈ S
.

To issue an ABE key for a set A ⊆ U , we use a DIBE key for idA. On the other
hand, to encrypt a message M in ABE with a DNF policy F =

∨k
j=1(

∧
a∈Sj

a),
where each attribute a is in U , we encrypt the same message M in DIBE each
with idSj

for all j ∈ [1, k]; this will result in k ciphertexts of the DIBE scheme.
Note that k is the number of OR, the disjunction, in the DNF formula.

Decryption can be done as follows. Suppose A satisfies F. Hence, we have that
there exists Sj (defined in the formula F) such that Sj ⊆ A. We then derive a
DIBE key for idSj

from our ABE key for A (which is then a DIBE key for idA);
this can be done since Sj ⊆ A implies that any positions of 1 in idSj

will also
contain 1 in idA (and thus the derivation is possible). We finally decrypt the
ciphertext associated with idSj

to obtain the message M . We summarize this
transformation in Figure 4.7.

Setup(param):

Run SetupDIBE(K)
Return (pk, sk)

KeyGen(sk,A):

Return
usk[A]← USKGenDIBE(sk, idA)

Encrypt(pk,F,M):

Parse F =
∨k

j=1(
∧

a∈Sj
a)

For all j ∈ [1, k], compute:
(Cj ,Kj)← EncDIBE(pk, idSj

) and
C ′

j ←M ⊕Kj

Return C = (C1, . . . ,Ck, C
′
1, . . . C

′
k)

Decrypt(usk[A],F,A,C):

Parse F =
∨k

j=1(
∧

a∈Sj
a)

Find j ∈ [1, k] s.t. Sj ⊆ A

Compute U ← USKDownDIBE(usk[A], idSj
)

Compute Kj ← DecDIBE(U, idSj
,Cj)

Return M = C ′
j ⊕Kj

Figure 4.7: ABE from DIBE

We have the following security theorem for the above ABE scheme. The proof is
very simple and is done by a straightforward hybrid argument over k ciphertexts
of DIBE.

Theorem 9. The above ABE from DIBE is PR-A-CPA secure under the pr-id-cpa
security of the DIBE scheme used. In particular for all adversaries A, we have

70

that AdvPR-A-CPAABE (A) ≤ k · Advpr-id-cpaDIBE (A) where k is the number of OR in the
DNF formula (associated to the challenge ciphertext).

Proof. We prove our transformation via a sequence of games beginning with the
real game for the PR-A-CPA security of the ABE and ending up with a game
where the ciphertext of the ABE is uniformly chosen at random e.g. a game
where adversary’s advantage is reduce to 0.

Let A be an adversary against the PR-A-CPA security of our transformation.
Let C be the simulator of the PR-A-CPA experience.

Game G0: This is the real security game.

Game G1.1: In this game the simulator generates correctly every ciphertexts
but the first one. The first ciphertext is replaced by a random element of the
ciphertext space. G1.1 is indistinguishable from G0 if the pr-id-cpa security holds
for the DIBE used.

AdvG0,G1.1(A) ≤ Adv
pr-id-cpa
DIBE (A)

Game G1.i: This game is the same than the game G1.i−1 but the i-th ciphertext
is replaced by a random element of the ciphertext space. G1.i is indistinguishable
from G1.i−1 if the pr-id-cpa security holds for the DIBE used.

AdvG1.i−1,G1.i(A) ≤ Adv
pr-id-cpa
DIBE (A)

Game G1.k: in this game all ciphertexts are random elements, G1.k is indistin-
guishable from G1.k−1 if the pr-id-cpa security holds for the DIBE used.

AdvG1.k−1,G1.k(A) ≤ Adv
pr-id-cpa
DIBE (A)

At this point our current game G1.k has for challenge encryption only random
elements. This means that an adversary has no advantage in winning this game.
We finally end up with the advantage of A in winning the original security game:

AdvPR-A-CPA
ABE (A) ≤ AdvG0,G1.k(A)

≤
k∑

i=1

AdvG1.i−1,G1.i(A)

≤ k × Adv
pr-id-cpa
DIBE (A)

4.2.3 Efficiency comparison for ABE

Our instantiation leads to a very efficient ABE scheme with tight reduction to
a classical primitive. This scheme would be one of the most practical. However

71

Name |pk| |sk| |C| pairing exp G exp Gt Reduction Loss

[OT10] 4U + 2 3U + 3 7m+ 5 7m+ 5 0 m O(qk)

[LW12] 24U + 12 6U + 6 6m+ 6 6m+ 9 0 m O(qk)

[CGW15]
6UR+ 12 3UR+ 3 3m+ 3 6 6m 0 O(qk)

[Att16]
scheme

10
6UR+ 12 3UR+ 6 3m+ 6 9 6m 0 O(qk)

[Att16]
scheme

13

96(M+TR)2+
log(UR)

3UR+ 6 3m+ 6 9 6m 0 O(qk)

Our
DNF-
ABE

4U + 2 3U + 3 3k + 2 13 0 0 O(k)

Figure 4.8: Efficiency Comparison of Practical CP-ABE
Schemes

we achieve ABE where the access structure has to be a boolean formula in the
DNF which is less practical than allowing any kind of access structure (which
is done in others practical schemes).

Figure 4.8 presents a non exhaustive comparison of our ABE schemes with
efficient ones. They are all fully secure under the classical assumption DLin.
U is the size of the universe of attributes. m is the number of attributes in
a policy. t is the size of an attribute set, and T is the maximum size of t (if
bounded). R is the maximum number of attributes multi used in one policy (if
bounded). qk is again the number of all the key queries made by the adversary
during security game. For our scheme, k is the number of OR, the disjunction,
in the associated DNF formula.

4.3 From IBE To Oblivious Transfer

4.3.1 Oblivious Transfer Formalism and Main Issues

The Blind IBE (BIBE) we built can instantiate an efficient adaptive Oblivious
Transfer, in this section we will see how. In the latest OT in the UC frame-
work [CKWZ13,ABB+13, BC15], the server is required to send an encryption
of the complete database for each line required by the user (thus O(n) each
time). We here give a protocol requiring O(log(n)) for each line (except the
first one, still in O(n)), in the UC framework with adaptive corruptions under
classical assumptions (MDDH). Our protocol is an adaptive version of the one
from [BC15] using an improvement of the ideas from [GH07].

The idea is to encrypt the database with an IBE (each line encrypted for the
identity: "number of this line"), and send it once and for all to the recipient.
Then the recipient will ask for IBE’s private keys in an oblivious way. This
second phase can be seen as an oblivious transfer on the database {users’ secret
keys}. Most of the reduction of the communication cost is done by using IBE
with structure on the users’ secret keys (Fragmented IBE for example).

72

Technical issue: In the Blind Fragmented IBKEM transformation, we use implicit
decommitment. But in the UC framework it implies a very strong commitment
primitive (formalized as SPHF-friendly commitments in [ABB+13]), which is
both extractable and equivocable. Our idea is here to split these two properties
by using on the one hand an equivocable commitment and on the other hand an
(extractable) CCA encryption scheme by generalizing the way to access a line
in the database. But this is infeasible with simple line numbers8. The change
is tiny, we will not consider refer to a number for a target a line of the database
(e.g. the identity) but we will use encode them: to request an a line we will
commit a word Wi in the language Li.

4.3.2 High Level Idea of the Construction:

Our construction builds upon the UC-secure OT scheme from [BC15], with
ideas inspired from [GH07], who propose a neat framework allowing to achieve
adaptive Oblivious Transfer (but not in the UC framework). Their construction
is quite simple: It requires a Blind property for the IBE allowing the recovery
of the secret key to be oblivious. Note that this method can be seen as realizing
an oblivious transfer with a database made of secret keys.

This approach is round-optimal: After the database preparation, the first flow
is sent by the user as a commitment to the identity i, and the second one is
sent by the server with the blinded expected information. There was several
issues to have a UC-secure OT from this construction. We have to handle the
possible adaptive corruption request from the adversary in the security games.
To do so, as explained before, we use extractable and equivocable commitments
using word in languages instead of simple number. Moreover using fragmented
IBKEM and blinding them with our transformation we improve the efficiency of
our scheme.

Precisely handling adaptive corruptions: To deal with corruptions of the
user, recall that a simulated server (knowing the secret key of the encryption
scheme) is already able to extract the identity committed to. But we now
consider that, for all id, Lid is the language of the equivocable commitments
on words in the inner language L̃id = {id}. We assume them to be a Trapdoor
Collection of Languages, which means that it is computationally hard to sample
an element in L1∩· · ·∩Ln, except for the simulator, who possesses a trapdoor tk
(the equivocation trapdoor) allowing it to sample an element in the intersection
of languages. This allows a simulated user (knowing this trapdoor) not to really
bind to any identity during the commitment phase. The only difference with the
algorithm described in Figure 3.12 is that the user now encrypts this word W
(which is an equivocable commitment on his identity id) rather than directly
encrypting his identity id: C = Encryptℓcca(W ;ρ).

8Thus we have to very slightly change the scheme in figure 3.12

73

4.3.3 Generic Construction of Adaptive OT

We describe our generic construction of OT in Figure 4.9. We additionally as-
sume the existence of a Pseudo-Random Generator (PRG) F with input size
equal to the plaintext size, and output size equal to the size of the messages
in the database and an IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,
Encryptcpa,Decryptcpa) with plaintext size at least equal to the security param-
eter. This additional step making use of the encryption scheme is aimed to
handle corruptions of any party before the first flow. This leads to the following
security result.

Theorem 10. Assuming that BlindUSKGen is constructed as described above,
the adaptive Oblivious Transfer protocol described in Figure 4.9 UC-realizes the
functionality FL

OT presented in Figure 2.16 with adaptive corruptions assuming
reliable erasures.

Proof. We prove the security of this protocol via a sequence of games, starting
from the real game, where the adversary A interacts with the real players, and
ending with the ideal game, where we have built a simulator S that makes the
interface between the ideal functionality F and the adversary A . The simulator
is explicitely given in Game 11. Recall that we consider adaptive corruptions.

We denote as S the server and U the user. The main idea is that, by assumption,
the simulator can always obtain the common trapdoor tk of the collection of
languages (L1, . . . ,Ln) and use it to commit to a word simultaneously belonging
to all the languages. In case of adaptive corruption, we face two cases: either the
word was not correct, in which case, following the real protocol, the user should
have erased his randomness, so that the simulator does not have anything to
reveal. Or the word was correct and should belong to a certain language Ls,
and the simulator can then adapt the word and randomness so that it seems
to belong to Ls (only). This enables us to avoid the use of commitments both
extractable and equivocable (which is the usual tool for adaptive corruptions).

Due to the construction of the protocol, we have to prove that the user recovers
the secret key usk[s] corresponding to the s-th line of the database in an oblivious
way, which means on the one hand that the user gains no information on the
other keys, and on the other hand that the server gains no information on the
key required by the user. Assuming this is the case (the proof follows), the
adaptive security of the global oblivious transfer relies on the security of the
underlying IBE scheme: The indistinguishability of the ciphertexts ensure that
the user only recovers the s-th line for which he knows the secret key usk[s].

Since the channels are authenticated, we know whether a flow was sent by an
honest player (and received without any alteration) or not.

Game G0: This is the real game.

Game G1: In this game, the simulator generates correctly every flow
on behalf of the honest players, as they would do themselves, knowing the

74

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K)a.
Database Preparation:

1. Server runs Setup(K), to obtain mpk,msk.

2. For each line t, he computes (Dt,Kt) = Enc(mpk, t), and Lt = Kt ⊕
DB(t).

3. He also computes usk[i, b] for all i = 1 . . . ,m and b = 0, 1 and erases
msk.

4. Server generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores

sk and completely erases the random coins used by KeyGen.

5. He then publishes mpk, {(Dt, Lt)}t, pk.

Index query on s:

1. User chooses a random value S, computes R ← F (S) and encrypts S
under pk:

c
$← Encryptcpa(pk, S)

2. User computes C with the first flow of
BlindUSKGen(〈(S,msk)(U, s, ℓ;ρ)〉) with ℓ = (sid, ssid, U,S) (see
Figure 3.14).

3. User stores the random ρs = {ρ∗} needed to open C to s, and completely
erases the rest, including the random coins used by Encryptcpa and sends
(c, C) to the Server

IBE input msk:

1. Server decrypts S ← Decryptcpa(sk, c) and computes R← F (S)

2. Server runs the second flow of BlindUSKGen(〈(S,msk)(U, s, ℓ;ρ)〉) on C
(see Figure 3.14).

3. Server erases every new value except (hpi,b)i,b, (busk[i, b])i,b, Z ⊕ R and
sends them over a secure channel.

Data recovery:

1. User then using, ρs recovers usk[s] from the values received from the
server.

2. He can then recover the expected information with Dec(usk[s], s,Ds)⊕Ls

and erases everything else.

ausing a commitment and a cpa secure encryption

Figure 4.9: Adaptive UC-Secure 1-out-of-n OT from a
Fragmented Blind IBE

75

database (DB(1), . . . , DB(n)) and the word W sent by the environment to the
server and the user. In all the subsequent games, the players use the label
ℓ = (sid, ssid,S, U). In case of corruption of an honest player (either server or
user), the simulator can give the internal data generated on behalf of the honest
users.

Game G2: In this game, we replace the setup algorithm Setup by SetupT,
allowing the existence of a trapdoor to find words in the intersection of the
collection of languages. We also allow the simulator to program SetupCCA in the
CRS, enabling it to learn the extraction trapdoor of the CCA encryption scheme.
The indistinguishability of the setups makes this game indistinguishable from
the former one for the environment. Corruptions are handled the same way.

Game G3: We first deal with honest servers S: he computes everything
honestly during the database preparation. When receiving a commitment C,
the simulator extracts the committed value W . By testing with the help of
the algorithm Verify, it recovers s such that W ∈ Ls. If it recovers s 6= t such
that W ∈ Ls ∩ Lt, then the adversary has broken the infeasibility of finding
a word in an intersection of languages without knowing the trapdoor and we
abort the game. Otherwise, instead of computing the keys Hi,b, for i = 1, . . . , ℓ

and b = 0, 1 with the hash function, the simulator then chooses Hi,b
$← G when

b is not equal to the i-th bit of W .

With an hybrid proof, applying the smoothness for every honest sender, on
every index (i, b) such that b 6= Wi, since C is extracted to W ∈ Li, for any
(i, b) such that b 6= Wi, the hash value is indistinguishable from a random value.

In case of corruption, everything has been erased (except after the pre-flow,
where the simulator can reveal the keys (pk, sk) generated honestly). This game
is thus indistinguishable from the previous one under the smoothness.

Game G4: Still in this case, when receiving a commitment C, the simulator
extracts the committed value W . By testing with the help of the algorithm
Verify, it recovers s such that W ∈ Ls. Instead of proceeding as the server
would do with (usk[i, b]), the simulator proceeds on (usk′[i, b]), with usk′[i, b] = 0
except if b = Wi. Since the masks Hi,b, for b 6= Wi, are random, this game is
perfectly indistinguishable from the previous one.

Game G5: We now deal with honest users U : the simulator now uses the
trapdoor tk to find a word W ′ in the intersection of all languages.

With an hybrid proof, applying a security game in each session in which the
simulator does not know the trapdoor tk, one can show the indistinguishability
of the two games. In case of corruption of the receiver, one learns the already
known value W , thus s.

Game G6: We deal with the generation of R for honest servers S
where the users U are honests: if S and U are honest at least until S

76

received the second flow, the simulator sets R = F (S′) for both S and U , with
S′ a random value, instead of R = F (S).

With an hybrid proof, applying the IND-CPA property for each session, one can
show the indistinguishability of this game with the previous one.

Game G7: Still in the same case, the simulator sets R as a random value,
instead of R = F (S′).

With an hybrid proof, applying the PRF property for each session, one can show
the indistinguishability of this game with the previous one.

Game G8: We now deal with the generation of Hi,Wi
for honest servers

S with honest users U . Thanks to the additional random mask R, one can
send random (usk[i,Wi])i, and Hi,Wi

can be computed later (when U actually
receives its flow).

As above, but only if U has not been corrupted before receiving its flow, the
simulator chooses Hi,Wi

$← G. With an hybrid proof, applying the pseudo-
randomness, for every honest sender, the hash value is indistinguishable from
a random value, because the adversary does not know any decommitment in-
formation for C. If the player U involved in the pseudo-randomness game gets
corrupted (but the decommitment information is unknown) we are not in this
case, and we can thus abort it.

In case of corruption of S, everything has been erased (except after the pre-flow,
where the simulator can reveal the keys (pk, sk) generated honestly).

In case of corruption of the receiver U , and thus receiving the value D̃B(s),

the simulator computes K̃s such that K̃s ⊕ D̃B(s) = Ks ⊕ DB(s) and the

corresponding ũsk[W]. It chooses R (because it was a random value unknown
to the adversary and all the other Hi,b are independent random values too) such

that
(⊕

i busk[i,Wi]⊕H ′
i,Wi

)
⊕ Z ⊕R = ũsk[W].

This game is thus indistinguishable from the previous one under the pseudo-
randomness.

Remark. We now explain how, in the pairing instantiation which will follow,
given already sent values Ds,Ks ⊕DB(s), a simulator recovering from the en-

vironment the value D̃B(s), can adaptively be able to change his memory so

as to compute a user key ũsk[W] such that Dec(ũsk[W],W,Ds) = DB(s) ⊕

Ks ⊕ D̃B(s). This is exactly where we use the restriction on the size of
DB elements so that we can manage to find a vector δs ∈ G2k+1

2 such that

DB(s)⊕ D̃B(s) = e(Ds, δs). Thus, this allows the server to update his memory

into ũsk[W] = usk[W] · δs.

Game G9: Still in this case, the simulator proceeds on (usk[i, b]), with
usk[i, b] = 0 for all i, b. Since the masks Hi,b, Z⊕R, for any i, b, are independent
random values (the busk[i, b], for b 6= Wi are independent random values, and

77

R is independently random), this game is perfectly indistinguishable from the
previous one.

We remark that it is therefore no more necessary to know the index s given by
the ideal functionality to the honest receiver U , to simulate S (but it is still
necessary to simulate U).

Game G10: We do not use anymore the knowledge of s when simulating
an honest user U : the simulator generates a word W ′ in the intersection of
the languages and C

$← Encryptℓcca(W
′;ρ), with ℓ = (sid, ssid,S,R), to send

C during the first phase of honest users. This does not change anything from
the previous game since the randomness needed to open to a word in another
language is never revealed.

When it thereafter receives (Send, sid, ssid,S,R, (hpi,b, busk[i, b])) from the ad-
versary, the simulator computes, for all lines t, usk[Wt] and recovers Kt and
finally DB(t), which provides the database (DB(1), . . . , DB(n)) submitted by
the sender. It uses them to send a Send-message to the ideal functionality.

Game G11: We can now make use of the functionality, which leads to the
following simulator:

• when receiving a Send-message from the ideal functionality, which means
that an honest server has sent a pre-flow and a database, the simulator
generates a key pair (pk, sk)

$← KeyGen(1K) and sends pk as pre-flow;

• after receiving a pre-flow pk (from an honest or a corrupted sender) and a
Receive-message from the ideal functionality, which means that an honest
receiver has sent a first flow, the simulator generates a word W ′ in the
intersection of languages, C

$← Encryptℓcca(W ;ρ) with ℓ = (sid, ssid,R,S)

and c
$← Encrypt(pk, S) where S is a random value;

• when receiving a commitment C and a ciphertext c, generated by the ad-
versary (from a corrupted receiver), the simulator extracts the committed
value W and recovers s (aborting in case of multiple values), and uses it
to send a Receive-message to the ideal functionality (and also decrypts
the ciphertext c as S, and computes R = F (S));

• when receiving (hpi,b, busk[i, b]) from the adversary, the simulator com-
putes, for all lines t, usk[Wt] and recovers Kt and finally DB(t), which
provides the database (DB(1), . . . , DB(n)) submitted by the sender. It
uses them to send a Send-message to the ideal functionality.

• when receiving a Received-message from the ideal functionality, together

with D̃B(s), on behalf of a corrupted receiver, from the extracted W
leading to s, instead of proceeding as the sender would do on (usk[i, b]),
the simulator proceeds on (usk′[i, b]), with usk′[i, b] = 0 except if b = Wi.

78

• when receiving a commitment C and a ciphertext c, generated by an hon-
est sender (i.e., by the simulator itself), the simulator proceeds as above
on (usk′[i, b]), with usk′[i, b] = 0 except if b = Wi, but it chooses R uniformly
at random instead of choosing it as R = F (S); in case of corruption af-

terward, the simulator will adapt R such that
(⊕

i busk[i,Wi]⊕H ′
i,Wi

)
⊕

Z ⊕ R = ũsk[W], where ũsk[W] leads to K̃s such that K̃s ⊕ D̃B(s) =

Ks ⊕ DB(s), where D̃B(s) is the message actually received by the re-
ceiver.

Any corruption either reveals s earlier, which allows a correct simulation of the
receiver, or reveals (DB(1), . . . , DB(n)) earlier, which allows a correct simula-
tion of the server. When the server has sent his flow, he has already erased all
his random coins.

However, there would have been an issue when the user is corrupted after the
server has sent is flow, but before the user receives it, since he has kept ρ: this
would enable the adversary to recover usk[W] from busk[i,Wi] and hpi,Wi

. This
is the goal of the ephemeral mask R that provides a secure channel.

Adaptive UC-Secure Oblivious Transfer. Using the instantiations of the
fragmented IBE in figure 3.13 and the transformation 3.14, we finally get our
instantiation by combining this k −MDDH-based blind IBE with a k −MDDH

variant of El Gamal for the CPA encryption needed.

The requirement on the IBE blind user secret key generation (being able to
adapt the key if the line changes) is achieved assuming that the server knows
the discrete logarithms of the database lines9. For practical applications, one
could imagine to split all 256-bit lines into 8 pieces for a decent/constant trade-
off in favor of computational efficiency.

Efficiency: for k = 1, so under the classical SXDH assumption, the first flow
requires 8 log |DB| elements in G1 for the CCA encryption part and log(|DB|+
1) in G2 for the chameleon one, while the second flow would now require 1 +
4 log |DB| elements in G1, 1 + 2 log |DB| for the fragmented masked key, and
2 log |DB| for the projection keys. As said before other OT scheme are under
non classical security assumption [GH07] or have a communication cost linear
in the size of the database (there is a comparison of non adaptive OT in Figure
5.11).

9This is quite easy to achieve by assuming that for all line s, DB(s) = [db(s)]1 where db(s)
is the real line (thus known). It implies a few more computation on the user’s side in order to
recover db(s) from DB(s), but this remains completely feasible if the lines belong to a small
space.

79

Chapter 5

Oblivious Transfer

Generalization and New

Approach

During the study of Oblivious as a stand alone (e.g. not as an IBE’s application)
we remarked that an OT and many other protocols such as Oblivious Signature-
based Envelope1 can be generalized into one protocol that we called Oblivious
Language-based Envelope. We also give a general instantiation of this new
kind of protocol. In this section too SPHF will be a very important tool for
our instantiations. Secondly, we link two primitives: Password authenticated
key exchange and Oblivious Transfer. Precisely we show how to transform an
efficient PAKE into an efficient OT.

5.1 Oblivious Language-based Envelope

In this section we generalize many existing primitives such as Oblivious Signature-
Based Envelope, Oblivious Transfer and even Blind IBKEM into a new protocol
that we call Oblivious Language-based Envelope. First we describe what is
an Oblivious Signature-Based Envelope to see the likelihood with our Oblivi-
ous transfer constructed in the previous Chapter. Then we describe our new
protocol and give a generic instantiation secure in the UC-framework.

5.1.1 Oblivious Signature-Based Envelope

The construction from 4.3 opens new efficient applications to the already known
Oblivious-Transfer protocols. But what happens when someone wants some
additional access control by requesting extra properties, like if the user is only
allowed to ask two lines with the same parity bits, the user can only request

1defined in the next section.

80

lines for whose number has been signed by an authority, or even finer control
provided through credentials? A first example could be with a database made
of only one line but the access is delivered only if the recipient owns a special
signature. This is called Oblivious Signature-based envelope and has already
been studied in [LDB03,BPV12]. In other words in an OSBE protocol a sender
S wants to send a private message m ∈ {0, 1}K to a recipient R in possession
of a valid certificate/signature on a public message M (given by a certification
authority):

Definition 28 (Oblivious Signature-Based Envelope). An OSBE scheme is de-
fined by four algorithms (Setup,KeyGen, Sign,Verify), and one interactive proto-
col Protocol〈S,R〉:

• Setup(1K), where K is the security parameter, generates the global param-
eters param;

• KeyGen(K) generates the keys (vk, sk) of the certification authority;
• Sign(sk,M) produces a signature σ on the input message M , under the

signing key sk;
• Verify(vk,M, σ) checks whether σ is a valid signature on M , w.r.t. the

public key vk; it outputs 1 if the signature is valid, and 0 otherwise.
• Protocol〈S(vk,M, P),R(vk,M, σ)〉 between the sender S with the private

message P , and the recipient R with a certificate σ. If σ is a valid signa-
ture under vk on the common message M , then R receives M , otherwise
it receives nothing. In any case, S does not learn anything.

An OSBE scheme should fulfill the following security properties 2. To the best
of our knowledge, no UC functionality has already been given.

• correct : the protocol actually allows R to learn P , whenever σ is a valid
signature on M under vk;

• semantically secure: the recipient learns nothing about S’s input m if
it does not use a valid signature σ on M under vk as input. More pre-
cisely, if S0 owns P0 and S1 owns P1, the recipient that does not use
a valid signature cannot distinguish an interaction with S0 from an in-
teraction with S1 even if he has eavesdropped on several interactions
〈S(vk,M, P),R(vk,M, σ)〉 with valid signatures, and the same sender’s
input P ;

• escrow-free (oblivious with respect to the authority): the authority (owner
of the signing key sk), playing as the sender or just eavesdropping, is
unable to distinguish whether R used a valid signature σ on M under vk

as input.
• semantically secure w.r.t. the authority : after the interaction, the author-

ity (owner of the signing key sk) learns nothing about m from a passive
access to a challenge transcript3.

2The formal security games are given in [BPV12], in this thesis will formally recall this
properties through the UC functionality of OLBE described in figure 5.1.

3This property is different from the semantic security described above, indeed in the context
of OSBE the signer and the sender can be different entities

81

5.1.2 Definition of an Oblivious Language-Based Envelope

Oblivious Language-Based Envelope (OLBE) generalizes Oblivious Transfer and
OSBE, for n messages (with n polynomial in the security parameter K) to provide
the best of both worlds.

Languages. Let X be a set of elements. The language L ⊂ X used in the defi-
nition of an OLBE should be a hard-partitioned subset of X, i.e. it is computa-
tionally hard to distinguish a random element in L from a random element not
in L. We here mainly consider languages which are hard-partitioned subsets, for
instance, encryptions of publicly verifiable languages. This sublanguages should
fulfill the following properties:

• Publicly Verifiable: Given a word x in X along with a witness w, anyone
should be able to decide in polynomial time whether x ∈ L or not.

• Self-Randomizable: Given a word in the language, anyone should be able
to sample a new word in the language4, and the distribution of this resam-
pling should be indistinguishable from an honestly computed distribution.
This will be used in order to prevent an adversary, or the authority in
charge of distributing the words, to learn which specific form of the word
was used by the user.

In case we consider several languages (L1, . . . ,Ln), we also assume it is a Trap-
door Collection of Languages : It is computationally hard to sample an element
in L1∩· · ·∩Ln, except if one possesses a trapdoor tk (without the knowledge of
the potential secret keys)5. For example, in the previous chapter we used this
property to handle adaptive corruptions.

This concept of languages is very flexible and allows a lot of different applications
to the concept of OLBE. For example we can consider a language where it is hard
to create a word in the language6. This is the case for the OSBE protocol: the
signature is given by the authority and under the unforgeability of the signature
scheme, it is hard to create a fresh and valid signature.

OLBE. In such a protocol, a sender S wants to send one or several private
messages to a recipient R. R will be able to recover any message for which
he possesses a word in the corresponding language. Let’s say that the sender
sends nmax ≤ n for a fixed n. In such a scheme, the languages (L1, . . . ,Ln)
are assumed to be a trapdoor collection of languages, publicly verifiable and
self-randomizable.

Following the definitions for OSBE recalled above and given in [LDB03,BPV12],
we give the following definition for OLBE. Due to the proximity of the primitives
we shape our definition of OLBE as the definition of OSBE.

4It should be noted that this property is not incompatible with the potential secret key of
the language in case it is keyed (see below).

5This implicitly means that the languages are compatible, in the sense that one can indeed
find a word belonging to all of them.

6We refer to this kind of languages as Keyed languages

82

Definition 29 (Oblivious Language-based Envelope). An OLBE scheme is de-
fined by five algorithms (Setup, SetupT,KeyGen, Samp,Verify), and one interac-
tive protocol Protocol〈S,R〉:

• Setup(1K), where K is the security parameter, generates the global param-
eters param, among which the numbers n and nmax;

or SetupT(1K), where K is the security parameter, additionally allows the
existence7 of a trapdoor tk for the collection of languages (L1, . . . ,Ln).

• KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, the description of the
language Li (as well as the language key skLi

if need be). If the parameters
param were defined by SetupT, this implicitly also defines the common
trapdoor tk for the collection of languages (L1, . . . ,Ln).

• Samp(param, I) or Samp(param, I, (skLi
)i∈I) such that I ⊂ {1, . . . , n} and

|I| = nmax, generates a list of words (Wi)i∈I such that Wi ∈ Li for all
i ∈ I;

• Verifyi(Wi,Li) checks whether Wi is a valid word in the language Li. It
outputs 1 if the word is valid, 0 otherwise;

• Protocol〈S((L1, . . . ,Ln), (m1, . . . ,mn)),R((L1, . . . ,Ln), (Wi)i∈I)〉, which is
executed between the sender S with the private messages (m1, . . . ,mn) and
corresponding languages (L1, . . . ,Ln), and the recipient R with the same
languages and the words (Wi)i∈I with I ⊂ {1, . . . , n} and |I| = nmax, pro-
ceeds as follows. For all i ∈ I, if the algorithm Verifyi(Wi,Li) returns 1,
then R receives mi, otherwise it does not. In any case, S does not learn
anything.

The collections of words can be a single certificate/signature on a message M
(encompassing OSBE, with n = nmax = 1), a password, a credential, an equiv-
ocable commitment of a line number (encompassing our UC secure 1-out-of-n
oblivious transfer, with nmax = 1), k line numbers (encompassing k-out-of-n
oblivious transfer, with nmax = k), etc... Like OSBE and our adaptive OT, we
allow a simulated setup SetupT to be run instead of the classical setup Setup in
order to allow the simulator to possess some trapdoors.

5.1.3 Security Properties and Ideal Functionality of OLBE

We describe here the properties that an OLBE should satisfy, we further describe
them more formally with an ideal functionality (see Figure 5.1):

• correctness : the protocol actually allows R to learn (mi)i∈I , whenever
(Wi)i∈I are valid words of the languages (Li)i∈I , where I ⊂ {1, . . . , n}
and |I| = nmax;

• semantically secure (sem): the recipient learns nothing about the input
mi of S if it does not use a word in Li. More precisely, if S0 owns mi,0

and S1 owns mi,1, the recipient that does not use a word in Li cannot

7The specific trapdoor will depend on the languages and be computed in the KeyGen

algorithm.

83

distinguish between an interaction with S0 and an interaction with S1
even if the receiver has seen several interactions

〈S((L1, . . . ,Ln), (m1, . . . ,mn)),R((L1, . . . ,Ln), (W
′
j)j∈I)〉

with valid words W ′
i ∈ Li, and the same sender’s input mi;

• escrow free (oblivious with respect to the authority): the authority corre-
sponding to the language Li (owner of the language secret key skLi

– if
it exists), playing as the sender or just eavesdropping, is unable to dis-
tinguish whether R used a word Wi in the language Li or not. This
requirement also holds for anyone holding the trapdoor key tk.

• semantically secure w.r.t. the authority (sem∗): after the interaction, the
trusted authority (owner of the language secret keys if they exist) learns
nothing about the values (mi)i∈I from the transcript of the execution.
This requirement also holds for anyone holding the trapdoor key tk.

Moreover, the setup algorithms should be indistinguishable and it should be
infeasible to find a word belonging to two or more languages without the knowl-
edge of tk.

The functionality FOLBE is parametrized by a security parameter K and a
set of languages (L1, . . . ,Ln) along with the corresponding public verification
algorithms (Verify1, . . . ,Verifyn). It interacts with an adversary S and a set
of parties P1,. . . ,PN via the following queries:
• Upon receiving from party Pi an input of the form
(Send, sid, ssid,Pi,Pj, (m1, . . . ,mn)) , with mk ∈ {0, 1}K for
all k: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal
(Send, sid, ssid,Pi,Pj) to the adversary S . Ignore further Send-message
with the same ssid from Pi.

• Upon receiving an input of the form
(Receive, sid, ssid,Pi,Pj, (Wi)i∈I) where I ⊂ {1, . . . , n}
and |I| = nmax from party Pj : ignore the message if
(sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded. Otherwise, reveal
(Receive, sid, ssid,Pi,Pj) to the adversary S and send the mes-
sage (Received, sid, ssid,Pi,Pj , (m

′
k)k∈I) to Pj where m′

k = mk if
Verifyk(Wk,Lk) returns 1, and m′

k = ⊥ otherwise. Ignore further
Received-message with the same ssid from Pj .

Figure 5.1: Ideal Functionality for Oblivious Language-Based
Envelope FOLBE

The ideal functionality is inspired from the oblivious transfer functionality given
in [Can01,CKWZ13,ABB+13]. As for oblivious transfer (Figure 2.16), we adapt
them to the simple UC framework for simplicity.

Remark 6. If we specify the language to a set of signature over a known message
this ideal functionality becomes an ideal functionality for an OSBE scheme which
has never been defined before.

84

5.1.4 Generic UC-Secure Instantiation of OLBE with Adaptive
Security

For simplicity we focus on the case nmax = 1. It encompasses OSBE and 1-out-
of-n OT. To get the more general cases one could run many nmax = 1-OLBE in
parallel. This simplify the algorithms Samp and Verify.

Building Blocks. We assume the existence of a labeled CCA-encryption
scheme E = (Setupcca,KeyGencca,Encrypt

ℓ
cca,Decrypt

ℓ
cca)

8 compatible with an
SPHF onto a set G. In the KeyGen algorithm, the description of the lan-
guages (L1, . . . ,Ln) thus implicitly defines the languages (Lc

1, . . . ,L
c
n) of CCA-

encryptions of elements of the languages (L1, . . . ,Ln).

We additionally use a key derivation function KDF to derive a pseudo-random
bit-string K ∈ {0, 1}K from a pseudo-random element v ∈ G.

We also assume the existence of a Pseudo-Random Generator (PRG) F with
input size equal to the plaintext size, and output size equal to the size of the
messages in the database and an IND-CPA encryption scheme E = (Setupcpa,
KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal to the secu-
rity parameter.

We follow the ideas of the oblivious transfer constructions given in [ABB+13,
BC15], giving the protocol presented on Figure 5.2. For the sake of simplicity,
we only give the version for adaptive security, in which the sender generates a
public key pk and ciphertext c to create a somewhat secure channel (they would
not be used in the static version).

All the instantiations given are pairing-based but techniques explained in [BC15]
could be used to rely on other families of assumptions, like decisional quadratic
residue or even LWE.

Theorem 11. The oblivious language-based envelope scheme described in Fig-
ure 5.2 is UC-secure in the presence of adaptive adversaries, assuming reliable
erasures, an IND-CPA encryption scheme, and an IND-CCA encryption scheme
admitting an SPHF on the language of valid ciphertexts of elements of Li for
all i9.

The proof of this theorem is close to the proof of the Theorem 10, the main
difference comes from the fact that we do not have the blind IBE construction.
The other difference is the nature of the protocols: the language for Oblivious
transfer is precise (commitments of a number of line), but in the OLBE it is
general. The techniques remain the same for the rest of the proof.

8the notion of labeled encryption is very close to a simple encryption. In a labelled encryp-
tion the algorithm Encrypt and Decrypt take as input a label. A ciphertext encrypted with a
label ℓ can only be decrypted with the decryption algorithm using the same label.

9as soon as the languages are self-randomizable, publicly-verifiable and admit a common
trapdoor

85

CRS: param
$← Setup(1K), paramcca

$← Setupcca(1
K), paramcpa

$← Setupcpa(1
K).

Pre-flow:

1. Sender generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores

sk and completely erases the random coins used by KeyGen.

2. Sender sends pk to User.

Flow From the Receiver R:

1. User chooses a random value J , computes R ← F (J) and encrypts J

under pk: c
$← Encryptcpa(pk, J).

2. User computes C
$← Encryptℓcca(W ; r) with ℓ = (sid, ssid,R,S).

3. User completely erases J and the random coins used by Encryptcpa and
sends C and c to Sender. He also checks the validity of his words: the
receiver only keeps the random coins used by Encryptcca for the j such
that Verifyj(W,Lj) = 1 (since he knows they will be useless otherwise).

Flow From the Sender S:

1. Sender decrypts J ← Decryptcpa(sk, c) and then R← F (J).

2. For all j ∈ {1, . . . , n}, sender computes hkj = HashKG(ℓ,Lc
j , param),

hpj = ProjKG(hkj , ℓ, (L
c
j , param)), vj = Hash(hkj , (L

c
j , param), (ℓ, C)),

Qj = mj ⊕ KDF(vj)⊕R.

3. Sender erases everything except (Qj , hpj)j∈{1,...,n} and sends them over
a secure channel.

Message recovery:
Upon receiving (Qj , hpj)j∈{1,...,n}, R can recover mi by computing mi = Qi⊕
ProjHash(hpi, (L

c
i , param), (ℓ, C), r)⊕R.

Figure 5.2: UC-Secure OLBE for One Message (Secure Against
Adaptive Corruptions)

86

Proof. We prove the adaptive security of this protocol via a sequence of games,
starting from the real game, where the adversary A interacts with the real
players, and ending with the ideal game, where we have built a simulator S

that makes the interface between the ideal functionality F and the adversary
A .

The main idea is that, by assumption, the simulator can always obtain the
common trapdoor tk of the collection of languages (L1, . . . ,Ln) and use it to
commit to a word simultaneously belonging to all the languages. In case of
adaptive corruption, we face two cases: either the word was not correct, in which
case, following the real protocol, the user should have erased his randomness, so
that the simulator does not have anything to reveal. Or the word was correct
and should belong to a certain language Li, and the simulator can then adapt
the word and randomness so that it seems to belong to Li (only). This enables
us to avoid the use of commitments both extractable and equivocable (which is
the usual tool for adaptive corruptions).

We say that a flow is oracle-generated if it was sent by an honest player (or
the simulator) and received without any alteration by the adversary. It is said
non-oracle-generated otherwise.

Game G1: This is the real game.

Game G2: In this game, the simulator generates correctly every flow on
behalf of the honest players, as they would do themselves, knowing the inputs
(m1, . . . ,mn) and W sent by the environment to the sender and the receiver.
In all the subsequent games, the players use the label ℓ = (sid, ssid,S,R). In
case of corruption, the simulator can give the internal data generated on behalf
of the honest players.

Game G3: In this game, we replace the setup algorithm Setup by SetupT,
allowing the existence of a trapdoor to find words in the intersection of the
collection of languages. We also allow the simulator to program SetupCCA in the
CRS, enabling it to learn the extraction trapdoor of the CCA encryption scheme.
The indistinguishability of the setup makes this game indistinguishable from the
former one for the environment. Corruptions are handled the same way.

Game G4: We first deal with oracle-generated flows from the senders S:
when receiving a commitment C, the simulator extracts the committed value
W . By testing with the help of the algorithm Verify, it recovers i such that
W ∈ Li. If it recovers i 6= j such that W ∈ Li ∩ Lj , then the adversary has
broken the infeasibility of finding a word in an intersection of languages without
knowing the trapdoor and we abort the game. Otherwise, instead of computing
the key vt, for t = 1, . . . , n with the hash function, the simulator then chooses
vt

$← G for t 6= i.

With an hybrid proof, applying the smoothness for every honest sender, on
every index t 6= i, since C is extracted to W ∈ Li, for any t 6= i, the hash value
is indistinguishable from a random value.

87

In case of corruption, everything has been erased (except after the pre-flow,
where the simulator can reveal the keys (pk, sk) generated honestly). This game
is thus indistinguishable from the previous one under the smoothness.

Game G5: Still in this case, when receiving a commitment C, the simulator
extracts the committed value W , giving it the number i. Instead of proceeding as
the sender would do on (m1, . . . ,mn), the simulator proceeds on (m′

1, . . . ,m
′
n),

with m′
i = mi, but m′

t = 0 for all t 6= i. Since the masks vt, for t 6= i, are
random, this game is perfectly indistinguishable from the previous one.

Game G6: We now deal with oracle-generated flows from the receivers R:
the simulator now uses the trapdoor tk to find a word W in the intersection of
all languages.

With an hybrid proof, applying a security game in each session in which the
simulator does not know the trapdoor tk, one can show the indistinguishability
of the two games. In case of corruption of the receiver, one learns the already
known value i.

Game G7: We deal with the generation of R for honest senders S on
oracle-generated queries (adaptive case only): if S and R are honest at
least until S received the second flow, the simulator sets R = F (J ′) for both S
and R, with J ′ a random value, instead of R = F (J).

With an hybrid proof, applying the IND-CPA property for each session, one can
show the indistinguishability of this game with the previous one.

Game G8: Still in the same case, the simulator sets R as a random value,
instead of R = F (J ′).

With an hybrid proof, applying the PRF property for each session, one can show
the indistinguishability of this game with the previous one.

Game G9: We now deal with the generation of vi for honest senders
S on oracle-generated queries:

• in the static case (the pre-flow is only needed to compute (vk, vtk), and

thus we assume R = 0) the simulator chooses vi
$← G (for t 6= i, the

simulator already chooses vt
$← G), where i is the index given by the ideal

functionality to the honest receiver R.

With an hybrid proof, applying the pseudo-randomness for every honest
sender, the hash value is indistinguishable from a random value, because
the adversary does not know any decommitment information for C;

• in the adaptive case, and thus with the additional random mask R, one
can send a random mi, and vi can be computed later (when R actually
receives its flow).

As above, but only if R has not been corrupted before receiving its flow,
the simulator chooses vs

$← G. With an hybrid proof, applying the

88

pseudo-randomness, for every honest sender, the hash value is indistin-
guishable from a random value, because the adversary does not know any
decommitment information for C. If the player R involved in the pseudo-
randomness game gets corrupted (but the decommitment information is
unknown) we are not in this case, and we can thus abort it.

In case of corruption of S, everything has been erased (except after the pre-
flow, where the simulator can reveal the keys (pk, sk) generated honestly).

In case of corruption of the receiver R, and thus receiving the value mi,
the simulator chooses R (because it was a random value unknown to the
adversary and all the other vt are independent random values too) such
that

R⊕ ProjHash(hpi, (Li, param), (ℓ, C), ri)⊕mi = Qi.

This game is thus indistinguishable from the previous one under the pseudo-
randomness.

Game G10: Still in this case, the simulator proceeds on (m′
1, . . . ,m

′
n), with

m′
t = 0 for all i. Since the masks vt ⊕ R, for any t = 1, . . . , n, are independent

random values (the vt, for t 6= i are independent random values, and vi is also
independently random in the static case, while R is independently random in
the adaptive case), this game is perfectly indistinguishable from the previous
one.

We remark that it is therefore no more necessary to know the index i given by
the ideal functionality to the honest receiver R, to simulate S (but it is still
necessary to simulate R).

Game G11: We do not use anymore the knowledge of i when simulating an
honest receiver R: the simulator generates a word W in the intersection of
the languages and C

$← Encryptℓcca(W ; r), with ℓ = (sid, ssid,S,R), to send C
during the first phase of honest receivers. This does not change anything from
the previous game since the randomness needed to open to a word in another
language is never revealed.

When it thereafter receives (Send, sid, ssid,S,R, (Q1, hp1, . . . , Qn, hpn)) from the
adversary, the simulator computes, for i = 1, . . . , k, ri,

vi ← ProjHash(hpi, (Li, param), (ℓ, C), ri)

and mi = vi ⊕R⊕Qi. This provides the database submitted by the sender.

Game G12: We can now make use of the functionality, which leads to the
following simulator:

• when receiving a Send-message from the ideal functionality, which means
that an honest sender has sent a pre-flow, the simulator generates a key
pair (pk, sk)

$← KeyGen(1K) and sends pk as pre-flow;

89

• after receiving a pre-flow pk (from an honest or a corrupted sender) and a
Receive-message from the ideal functionality, which means that an honest
receiver has sent a first flow, the simulator generates a word W in the
intersection of languages, C

$← Encryptℓcca(W ; r) with ℓ = (sid, ssid,R,S)

and c
$← Encrypt(pk, J) where R is a random value;

• when receiving a commitment C and a ciphertext c, generated by the ad-
versary (from a corrupted receiver), the simulator extracts the committed
value W and recovers i (aborting in case of multiple values), and uses it
to send a Receive-message to the ideal functionality (and also decrypts
the ciphertext c as J , and computes R = F (J));

• when receiving (Q1, hp1, . . . , Qn, hpn) from the adversary (a corrupted
sender), the simulator computes, for i = 1, . . . , n, ri,

vi ← ProjHash(hpi, (Li, param), (ℓ, C), ri)

and mi = vi ⊕ R ⊕Qi. It uses them to send a Send-message to the ideal
functionality.

• when receiving a Received-message from the ideal functionality, together
with mi, on behalf of a corrupted receiver, from the extracted W leading
to i, instead of proceeding as the sender would do on (m1, . . . ,mn), the
simulator proceeds on (m′

1, . . . ,m
′
n), with m′

i = mi, but m′
j = 0 for all

j 6= i;

• when receiving a commitment C and a ciphertext c, generated by an hon-
est sender (i.e., by the simulator itself), the simulator proceeds as above on
(m′

1, . . . ,m
′
n), with m′

j = 0 for all j, but it chooses R uniformly at random
instead of choosing it as R = F (J); in case of corruption afterward, the
simulator will adapt R such that R⊕ProjHash(hpi, (Li, param), (ℓ, C), ri)⊕
Qi = mi, where mi is the message actually received by the receiver.

Any corruption either reveals i earlier, which allows a correct simulation of the
receiver, or reveals (m1, . . . ,mn) earlier, which allows a correct simulation of
the sender. When the sender has sent his flow, he has already erased all his
random coins.

However, there would have been an issue when the receiver is corrupted after
the sender has sent is flow, but before the receiver receives it, since he has kept
ri: this would enable the adversary to recover mi from Qi and hpi. This is the
goal of the ephemeral mask R that provides a secure channel.

5.1.5 Oblivious Primitives Obtained by the Framework

More than the two examples already discussed in this chapter, the framework
also enables us to give a new instantiation of Access Controlled Oblivious Trans-
fer under classical assumptions [CDN09]. In such a primitive, the user does not

90

automatically gets the line he asks for, but has to prove that he possesses one
of the credential needed to access this particular line.

5.2 Very Efficient Oblivious Transfer

The key block needed for our construction of an oblivious transfer/OLBE is the
Smooth Projective Hash Functions. It allows to compute a value by two different
ways. We can notice that the 2 parties never know if they computed the same
value or not. SPHF are heavy tools, very powerful but they come with high
computation and communication costs. In this section we investigate a way to
replace the role of the SPHF with a lighter primitive. We will first construct OT
from PAKE. Indeed PAKE fullfil the property discussed before (the values are
equal if they used the same password) and there exists instantiations of PAKE
that does not involve any SPHF [JR15].

A second motivation is the willingness to link Oblivious Transfer and PAKE.
Finding the link between primitives and showing which primitives can be used
to build other ones is a useful trend in proven cryptography. This has been
done many times before (IBE-Signature,IBE-IBS,...) and even during this PhD
(ABE-IBE,IBE-Fragmented Blind IBE, Fragmented Blind IBE-OT). We remark
that many transformations involved IBE confirming the central place of this
primitive.

This section will be divided into 4 parts. First we will define the primitive
PAKE and the security requirements for it. Then we will see how to generically
transform a PAKE into an Oblivious Transfer and afterwards apply it on different
examples. Finally we will apply our transformation on a QA-NIZK-based PAKE

to obtain our very efficient OT.

5.2.1 Password Authenticated Key Exchange

Roughly speaking a PAKE is an interactive protocol allowing two parties to
share a common secret by using passwords.

We present the PAKE ideal functionality FpwKE on Figure 5.3. It was described
in [CHK+05]. The main idea behind this functionality is as follows: If neither
party is corrupted and the adversary does not attempt any password guess,
then the two players both end up with either the same uniformly-distributed
session key if the passwords are the same, or uniformly-distributed independent
session keys if the passwords are distinct. In addition, the adversary does not
know whether this is a success or not. However, if one party is corrupted, or
if the adversary successfully guessed the player’s password (the session is then
marked as compromised), the adversary is granted the right to fully determine
its session key. There is in fact nothing lost by allowing it to determine the
key. In case of a wrong guess (the session is then marked as interrupted), the
two players are given independently-chosen random keys. A session that is nor
compromised nor interrupted is called fresh, which is its initial status.

91

The functionality FpwKE is parametrized by a security parameter k.
It interacts with an adversary S and a set of parties P1,. . . ,Pn via
the following queries:

• Upon receiving a query
(NewSession, sid, ssid, Pi, Pj, pw) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S . If this is the
first NewSession query, or if this is the second NewSession

query and there is a record (sid, ssid, Pj , Pi, pw
′), then

record (sid, ssid, Pi, Pj , pw) and mark this record fresh.

• Upon receiving a query (TestPwd, sid, ssid, Pi, pw
′) from

the adversary S :

If there is a record of the form (Pi, Pj , pw) which is fresh,
then do: If pw = pw′, mark the record compromised and reply
to S with “correct guess”. If pw 6= pw′, mark the record
interrupted and reply with “wrong guess”.

• Upon receiving a query (NewKey, sid, ssid, Pi, sk) from
the adversary S :

If there is a record of the form (sid, ssid, Pi, Pj , pw), and this
is the first NewKey query for Pi, then:

– If this record is compromised, or either Pi or Pj is cor-
rupted, then output (sid, ssid, sk) to player Pi.

– If this record is fresh, and there is a record (Pj , Pi, pw
′)

with pw′ = pw, and a key sk′ was sent to Pj ,
and (Pj , Pi, pw) was fresh at the time, then out-
put (sid, ssid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length K

and send (sid, ssid, sk′) to Pi.

Either way, mark the record (sid, ssid, Pi, Pj , pw) as
completed.

Figure 5.3: Ideal Functionality for PAKE FpwKE

92

The passwords are supposed to be distributed before the protocol, our security
holds for every distribution of passwords.

Before the UC framework, the classical security model for PAKE protocols was
the BPR model [BPR00]. The first ideal functionality for PAKE protocols in the
UC framework [Can01, CK02] was proposed by Canetti et al. [CHK+05], who
showed how a simple variant of the Gennaro-Lindell methodology [GL03] could
lead to a secure protocol10.

In case of corruption, the adversary learns the password of the corrupted player;
After the NewKey-query, it additionally learns the session key.

Description of a UC-Secure PAKE Scheme

For sake of simplicity we are going to consider PAKE protocols in two flows, since
there already exists a multitude of PAKE schemes satisfying this requirement,
and since minimizing the number of flows is one of the most important issues
in modern instantiations. This allows us to generically give an optimization,
leading to more efficient protocols.

In order to present the framework of our transformation, we formally split a
PAKE scheme into the following four algorithms (note that many algorithm use
two random element, one for each password): .

• Setup: An algorithm that generates the initial crs.
• flow1(pwi; ρi, ρ

′
i): The algorithm run by the user Pi, using some random-

ness ρi and ρ′i and possessing the password pwi, to generate the first flow
of the protocol. We note ρi the part of the randomness involved in hiding
the password, and ρ′i the remainder.

• flow2(flow1, pwj ; ρj , ρ
′
j): The algorithm run by the user Pj , using some

randomness ρj and possessing the password pwj , after receiving the flow
flow1, to generate the second flow of the protocol. This algorithm also

produces Pj ’s view of the key: K
(j)
i .

• Decap(flow2, pwi, f(ρi, ρ
′
i)): The algorithm run by Pi when receiving the

flow flow2 from Pj , using his password pwi and a function f(ρi, ρ
′
i) of

the randomness initially used and the remainder (which function can be
anything from the identity to the null function), to recover Pi’s view of

the key: K
(i)
j .

5.2.2 Generic Construction of a UC-Secure OT Scheme

In Canetti et al. in [CDVW12], they show how a UC-secure Oblivious Transfer
scheme can be transformed into a UC-secure PAKE scheme. In this section we are
going to go the other way, and show how a UC-secure PAKE can be transformed
into a UC-secure Oblivious Transfer scheme. While considering this direction
may seem like transforming a very strong primitive into a weaker one, this will

10we will later apply our transformation to a PAKE secure in the BPR model to show that
our transformation can apply also in a lattice-based instantiation

93

allow us to prepare a framework to propose the most efficient Oblivious Transfer
scheme to date.

We denote by DB = (L1, . . . , Ln) the database of the server containing n lines,
and by s the line requested by the user in an oblivious way. As for OT and
OLBE, we assume the existence of a CPA-Secure encryption scheme (Setupcpa,
,KeyGencpa,Encryptcpa,Decryptcpa)

11 and the existence of a Pseudo-Random
Generator (PRG) F . The public parameters of the encryption scheme are going
to be included in the public common reference string crs generated by the setup
algorithm of the PAKE scheme.

Using the PAKE scheme, the encryption scheme and the PRG, one can now
obtain an OT scheme from a PAKE scheme, as described in Figure 5.4. The
idea of the protocol is as follows:

• First, a setup phase enables to generate the CRS, both for the PAKE and
encryption schemes.

• The pre-flow is a technical requirement for the UC proof.
• When querying for line s, the receiver proceeds in three steps. The first

one consists in generating a masking value R (technical requirement for
the UC proof), the second one consists in running the first flow of the
PAKE scheme for password s to generate the first flow denoted 12 as flow0,
and the third one consists in erasing anything but the needed values, and
sending flow0 to the sender.

• When answering to this query, the sender also proceeds in three steps. The
first one consists in recovering the value R and the second one consists in
running, for each line k ∈ {1, . . . , n}, the second flow of the PAKE scheme
to generate the second flow denoted as flowk (using k as the password)

as well as S’s view of the session key, denoted as (Kk)
(S)
R . Finally, in the

third step, the server computes a xor Qk of the line Lk and this session
key and the value R and sends the set (flowk, Qk) back to R.

• When receiving this set of values, the receiver uses flows to run the de-
capsulation algorithm of the PAKE scheme (with password s) to recover

his view of the session key, denoted as (Ks)
(R)
S . He finally uses R, Qs and

(Ks)
(R)
S to recover the expected line Ls.

The correctness easily follows from the correctness of the PAKE protocol, since
the views of R and S of the session key for the PAKE scheme executed for
password s are the same. The scheme is oblivious with respect to S since the
first flow of the PAKE scheme executed by R does not reveal any information
on s. And it is oblivious with respect to R since the correctness of the PAKE

scheme gives him no information on the session keys (Kk)
(S)
R for k 6= s. The

security is stated in Theorem 12.

11Here again this encryption scheme handle corruptions before the first flow.
12Note that we now denote as flow0 (and not flow1) the flow generated by the PAKE algo-

rithm flow1, in order to avoid the confusion with the flow1 message generated by the sender
(for line 1) during the database answer phase.

94

CRS generation:
crs

$← Setup(1K), paramcpa
$← Setupcpa(1

K).

Pre-Flow:

1. S generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk

and completely erases the random coins used by KeyGencpa.

2. S publishes pk.

Index query on s:

1. R picks a random J , computes R ← F (J) and sets c
$←

Encryptcpa(pk, J).

2. R picks a random (ρ, ρ′), and runs flow1(s; ρ, ρ
′) to obtain flow0.

3. R stores f(ρ, ρ′) needed for the Decap algorithm and R and completely
erases the rest, including the random coins used by Encryptcpa and sends
(c, flow0) to S.

Database answer:

1. S decrypts J ← Decryptcpa(sk, c) and computes R← F (J).

2. For each line k:

• S picks a random (ρk, ρ
′
k), runs flow2(flow0, k; ρk, ρ

′
k) to generate

flowk and (Kk)
(S)
R .

• S then computes Qk = Lk ⊕ (Kk)
(S)
R ⊕R.

3. S erases everything except (flowk, Qk)k∈J1,nK and sends it to R.

Data recovery:

R then using f(ρ,⊥) computes (Ks)
(R)
S = Decap(flows, s, f(ρ, ρ

′)), sets Ls =

Qs ⊕ (Ks)
(R)
S ⊕R, and erases everything else.

Figure 5.4: UC-Secure 1-out-of-n OT from a UC-Secure PAKE

95

Theorem 12. Under the UC-security13 of the PAKE protocol, the existence of
a Pseudo-Random Generator (PRG) F with input size equal to the plaintext
size, and output size equal to the size of the messages in the database, and the
IND-CPA security of the encryption scheme, the transformation presented in
Figure 5.4 achieves a UC-secure 1-out-of-n Oblivious Transfer scheme, with the
same handling of corruptions as in the PAKE protocol.

The high-level idea of the proof is quite simple. Recall that in a UC proof,
one has to simulate one of the two players in front of a corrupted player. The
first flow allows the simulated server to extract the requested line. One will
then be able to send random noise on all the lines besides the correct one. The
PAKE functionality ensures that this is possible. Then again for honest users,
the simulator will replace the remaining line by a random noise. In case of
corruptions of the server, one relies on the security of the CPA encryption, to
ensure that everything was done honestly (the adversary is not able to test the
validity of the retrieved R, and so for the correct line as L ⊕ K ⊕ R where L
and K are the honest values, and R is simply set as Q ⊖ (L ⊕ K)). In case
of corruption of the user, we rely on the PAKE handling of user corruption to
adapt the memory.

Proof. To prove this theorem, we exhibit a sequence of games. The sequence
starts from the real game, where the adversary A interacts with real players and
ends with the ideal game, where we have built a simulator S that makes the
interface between the ideal functionality F and the adversary A . We prove the
adaptive version of the protocol. The proof of the static framework version can
be obtained by removing the parts related to adaptive version from the proof
below.

When the sender submits its values, the simulator can extract all the message
thanks to the crs trapdoor and get the witnesses for each indices. This allows
to simulate the Send-query to the ideal functionality.

Eventually, when simulating the honest senders, the simulator recovers the ex-
pected line value s from flow0, to set flows and Ls honestly, the other values can
be random. More details follow:

Game G1: This is the real game.

Game G2: In this game, the simulator generates correctly every flow
from the honest players, as they would do themselves, knowing the inputs
(L1, . . . , Ln) and s sent by the environment to the sender and the receiver.
In all the subsequent games, the players use the label ℓ = (sid, ssid, Pi, Pj). In
case of corruption, the simulator can give the internal data generated on behalf
of the honest players.

13Note that the transformation also allows to obtain an OT scheme from a BPR-secure
PAKE scheme in a game-based security model, but since this is of less interest, we do not
formally prove it due to lack of space.

96

Game G3: In this game, we just replace the Setup algorithm (if any), by
the one used in the PAKE proof, as this is transparent in the PAKE protocol,
this is also transparent in the Oblivious Transfer.

Game G4: We first deal with honest senders Pi: when receiving a first
flow flow0, the simulator recovers the prospective line value s (this is because,
we assume the UC-PAKE secure, hence after flow1, the simulator should be able
to send TestPwd, sid, ssid, Pi, s, hence knows said s). Instead of computing the
key Kt, for t = 1, . . . , n for all possible line/passwords, it chooses Kt at random
in the key space for t 6= s.

With an hybrid proof, for every honest sender, on every index t 6= s, since flow0

leads to s, for any t 6= s, the new key is indistinguishable from a random value,
under the PAKE security.

In case of corruption, everything is either already handled by the PAKE, or
erased. This game is thus indistinguishable from the previous one under the
PAKE functionality.

Game G5: Still in this case, when receiving flow0, the simulator recovers
the expected value s. Instead of proceeding as the sender would do on lines
(L1, . . . , Ln), the simulator proceeds on (L′

1, . . . , L
′
n), with L′

s = Ls, but m′
t = 0

for all t 6= s. Since the masks Kt, for t 6= s, are random, this game is perfectly
indistinguishable from the previous one.

Game G6: We now deal with honest receivers Pj : we replace flow1 for
in Step 1 of the index query phase of honest receivers by simulated flow1, using
the fact that the UC-Proof requires the simulator at this step to send a non
committing flow compatible with every possible password, and keep the PAKE

memory.

Using the PAKE security, one can show the indistinguishability of the two games.
In case of corruption of the receiver, one learns the already known value s.

Game G7: We deal with the generation of R for honest senders Pi on
honestly-generated queries (adaptive case only): if Pi and Pj are honest
at least until Pi received the second flow, the simulator sets R = F (S′) for both
Pi and Pj , with S′ a random value, instead of R = F (S).

With an hybrid proof, applying the IND-CPA property for each session, one can
show the indistinguishability of this game with the previous one.

Game G8: Still in the same case, the simulator sets R as a random value,
instead of R = F (S′).

With an hybrid proof, applying the PRF property for each session, one can show
the indistinguishability of this game with the previous one.

Game G9: We now deal with the generation of Ks for honest senders
Pi on honestly-generated queries:

97

• in the static case (the pre-flow is not necessary, and thus we assume R = 0)
the simulator chooses Ks at random in the Key Space (for t 6= s, the
simulator already chooses Kt random), where s is the index given by the
ideal functionality to the honest receiver Pj .
Under the PAKE security, for every honest sender, the key value is indis-
tinguishable from a random value, because the adversary does not know
any secret information on flow0;

• in the adaptive case, and thus with the additional random mask R, one
can send a random Qs, and Ks can be computed later (when Pj actually
receives its flow, and the simulator possibly learns the expected Ls).
As above, but only if Pj has not been corrupted before receiving its flow,
the simulator chooses Ks at random. Once again, invoking the PAKE

security, and the lack of secret information known by the adversary, this
value is indistinguishable from a random value. If the player Pj gets
corrupted we are not in this case, and we can thus abort it.
In case of corruption of Pi, everything has been erased and / or handled
by the PAKE simulator. In case of corruption of the receiver Pj , and thus
receiving the value Ls, the simulator chooses R (because it was a random
value unknown to the adversary and all the other Kt are independent
random values too) such that R⊕Ks ⊕Qs = Ls.

This game is thus indistinguishable from the previous one under the PAKE

Security (External Adversary, Adaptive Corruption of the second User).

Game G10: Still in this case, the simulator proceeds on (L′
1, . . . , L

′
n), with

L′
t = 0 for all t. Since the masks Kt ⊕R, for any t = 1, . . . , n, are independent

random values (the Kt, for t 6= s are independent random values, and Ks is
also independently random in the static case, while R is independently random
in the adaptive case), this game is perfectly indistinguishable from the previous
one.

We remark that it is therefore no more necessary to know the index s given by
the ideal functionality to the honest receiver Pj , to simulate Pi (but it is still
necessary to simulate Pj).

Game G11: We do not use anymore the knowledge of s when simulat-
ing an honest receiver Pj : the simulator generates an equivocable first flow
flow0 during the index query phase of honest receivers. We essentially break
the atomic flow1 from the PAKE in the two separated processes SimFlow and
OpenFlow, used by the simulator in the PAKE proof, and stores the equivoca-
tion information Λ, instead of just f(ρ). This does not change anything from
the previous game since the memory before flow0 is never revealed. It can be
updated with correct values in case of corruption of the receiver.

When it thereafter receives the message (Send, sid, ssid, Pi, Pj , (Q1, . . . , Qn)) from
the adversary, the simulator computes, for i = 1, . . . , n, the value f(ρi) ←
OpenFlowℓ(flow0, i,Λ), Ki ← Decap(flowi, i, f(ρi)) and mi = Ki⊕R⊕Qi. This
provides the database submitted by the sender.

98

Game G12: We can now make use of the functionality, which leads to the
following simulator:

• when receiving a Send-message from the ideal functionality, which means
that an honest sender has sent a pre-flow, the simulator generates a key
pair (pk, sk)

$← KeyGen(1K) and sends pk as pre-flow;
• after receiving a pre-flow pk (from an honest or a corrupted sender) and a
Receive-message from the ideal functionality, which means that an honest
receiver has sent an index query, the simulator generates (flow0,Λ)

$←

SimFlowℓ() and c
$← Encrypt(pk, S), with ℓ = (sid, ssid, Pi, Pj) and R a

random value, to send flow1 and c during the index query phase of the
honest receiver;

• when receiving flow0 and a ciphertext c, generated by the adversary (from
a corrupted receiver), the simulator recovers the committed value s, and
uses it to send a Receive-message to the ideal functionality (and also
decrypts the ciphertext c as S, and computes R = F (S));

• when receiving (Q1, . . . , Qn) from the adversary (a corrupted sender),
the simulator computes, for i = 1, . . . , n, f(ρi) ← OpenFlowℓ(flow0, i,Λ),
Ki ← Decap(flowi, i, f(ρi)) and Li = Ki ⊕R⊕Qi. It uses them to send a
Send-message to the ideal functionality.

• when receiving a Received-message from the ideal functionality, together
with Ls, on behalf of a corrupted receiver, from the recovered s, instead of
proceeding as the sender would do on (L1, . . . , Ln), the simulator proceeds
on (L′

1, . . . , L
′
n), with L′

s = Ls, but L′
i = 0 for all i 6= s;

• when receiving a a flow flow0 and a ciphertext c, generated by an honest
sender (i.e., by the simulator itself), the simulator proceeds as above on
(L′

1, . . . , L
′
k), with L′

i = 0 for all i, but it chooses R uniformly at random
instead of choosing it as R = F (S); in case of corruption afterward, the
simulator will adapt R such that R ⊕ Ks ⊕ Qs = Ls, where Ls is the
message actually received by the receiver.

Any corruption either reveals s earlier, which allows a correct simulation of the
receiver, or reveals (L1, . . . , Ln) earlier, which allows a correct simulation of the
sender. When the sender has sent his flow, he has already erased all his random
coins (or at least enough to be compatible with the PAKE key). However, there
would have been an issue when the receiver is corrupted after the sender has
sent is flow, but before the receiver receives it, since he has kept some witness
f(ρ): this would enable the adversary to recover Ls from Qs. This is the goal
of the ephemeral mask R that provides a secure channel.

As a consequence, the distance between the first and the last games is bounded
by q times the PAKE security, and the encryption CPA indistinguishability.

Generic Optimization

In the previous transformation we never used the fact that the first user in the
PAKE scheme (here, the receiver) does not learn the password from the second

99

(here, the sender). This is a property required by PAKE but not useful in the
transformation (since the sender executes n parallel PAKE schemes, using the
(public) number k of the lines as the password). This argument is the key of the
optimization we now propose in Figure 5.5. The difference is that in the index
query, the receiver does not pick the second randomness ρ′ and in the database
answer, the randomness ρk is not used anymore. The proof remains the same
as the previous one.

5.2.3 A Warm Up

Since in [ABB+13], the authors proposed both a UC-secure PAKE and a UC-
secure Oblivious Transfer constructions, this section serves as an example of
application of our framework. More precisely, we apply here our (optimized)
transformation to their UC-secure PAKE and show that we obtain exactly their
UC-secure Oblivious Transfer (which is the Oblivious Transfer that inspired the
instantiation of OLBE in the previous Chapter).

Description of Their UC-Secure PAKE Scheme

Description of the scheme (see Figure 5.6): Both parties (denoted as Pb and
Pb) want to share a key by using a common password pw. This will thus fix a
language Lpw, which is the set of valid commitments (the linear encryption in
their instantiation) of pw, for a smooth projective hash function. Both flows are
done simultaneously. In flowb, each party Pb will generate a pair of hash keys
(hkb, hpb) and then commit to the password pwb in Cb. Note that Pb stores the
witness δb that this value Cb is a valid commitment of pwb and sends (hpb, Cb)
to the other party.

In the decapsulation phase, each party Pb then receives the commitment and
the projection key of the other party and computes two hash values: On the
one hand, the projected hash value using his own commitment Cb along with
the witness δb and the projected key hpb sent by the other party, and on the
other hand, the (regular) hash value using the received commitment Cb and the
secret hash key hkb. The shared session key is then defined as the product of
these two values.

The commitment scheme used has specific properties explained in [ABB+13]
but we interest only needs it to be compatible with SPHF, and both extractable
and equivocable.

Completeness: If the two parties used the same password pw, then at the end
of the protocol they will share the same value. Thanks to the property of the
SPHF, the hash value and the projected value (on the same commitment Cb)
will be equal because the commitment belongs to the good language Lpw with
the good witness δb.

Applying the Framework to Obtain a UC-Secure OT Scheme

100

CRS generation:
crs

$← Setup(1K), paramcpa
$← Setupcpa(1

K).

Pre-Flow:

1. S generates a key pair (pk, sk)
$← KeyGencpa(paramcpa) for E , stores sk

and completely erases the random coins used by KeyGencpa.

2. S publishes pk.

Index query on s:

1. R picks a random J , computes R ← F (J) and sets c
$←

Encryptcpa(pk, J).

2. R picks a random ρ, and runs flow1(s; ρ,⊥) to obtain flow0.

3. R stores f(ρ,⊥) needed for the Decap algorithm and R and completely
erases the rest, including the random coins used by Encryptcpa and sends
(c, flow0) to S.

Database answer:

1. S decrypts J ← Decryptcpa(sk, c) and computes R← F (J).

2. For each line k:

• S picks a random ρ′k, and runs flow2(flow0, k;⊥, ρ
′
k) to generate

flowk and (Kk)
(S)
R .

• S then computes Qk = Lk ⊕ (Kk)
(S)
R ⊕R.

3. S erases everything except (flowk, Qk)k∈J1,nK and sends it to R.

Data recovery: R then using f(ρ,⊥) computes (Ks)
(R)
S =

Decap(flows, s, f(ρ,⊥)), sets Ls = Qs ⊕ (Ks)
(R)
S ⊕ R, and erases every-

thing else.

Figure 5.5: Optimized UC-Secure 1-out-of-n OT from a UC-Secure
PAKE

101

• Setup: ρ
$← SetupCom(1K)a.

• flowb(pwb; ρb):

– Generates hkb
$← HashKG(Lpwb

), hpb ← ProjKG(hkb,Lpwb
,⊥)

– picks additional ρ′b and computes (Cb, δb)
$← Comℓb(pwb; ρ

′
b)

with ℓb = (sid, ssid, Pb, Pb, hpb). Sets ρb = (hkb, ρ
′
b).

– stores hkb, δb, completely erases random coins used before and
sends (hpb, Cb).

• Decap(flowb, pwb, f(ρb) = hkb, δb):

– Computes H ′
b ← ProjHash(hpb̄,Lpwb

, (ℓb, Cb), δb) and
Hb̄ ← Hash(hkb,Lpwb

, (ℓb̄, Cb̄)) with ℓb̄ = (sid, ssid, Pb̄, Pb, hpb̄)

– Computes skb = H ′
b · Hb̄ and erases everything else, except

pwb.

aIt makes use of linear encryption as commitment and and use their SPHF based
on the language: linear encryption of valid password.

Figure 5.6: UC-Secure PAKE from [ABB+13]

We described in section 2.8.2 the Oblivious Transfer from [ABB+13]. In this
paper they proposed a PAKE and an OT as applications to their SPHF. With
our (optimized) transformation we manage to come from one to the other.

Theorem 13. As the PAKE is UC-Secure in presence of adaptive corruption
under SXDH, the Oblivious Transfer scheme presented in Figure 2.17 is a se-
cure 1-out-of-n Oblivious Transfer, with the same handling of corruptions as the
PAKE protocol under SXDH and the IND-CPA security of the encryption scheme.

On Another PAKE Scheme [KV09]

We are now going to show what happens when our general technique is used
even on lattice-based PAKE. As an interesting example, we will apply it to
the PAKE from [KV09] (see Figure 5.7). Lattices are drastically lacking a UC-
PAKE, however we are going to apply our framework to this BPR secure scheme
[BPR00].

We can see that this PAKE protocol is made of three flows. However the last flow
is there to perform a key confirmation. The approximate SPHF used ensures
that the two values (tk, tk′) completed are close-enough (in term of Hamming
weight), so that the random key sk generated and coded into c can then be
decoded.

Applying the Framework to Obtain a Secure OT Scheme

102

CRS generation:
(pk, sk)

$← KeyGen(param) for E . crs = (pk)
flow1(pw; r1):

1. P1 computes C1 = Encrypt(pk, ℓ1, pw; r1) where ℓ1 = (sid, ssid, P1, P2)

2. P1 sends C1 to P2

flow2(pw; r2):

1. P2 computes C2 = Encrypt(pk, ǫ, pw; r2).

2. P2 generates hk2 ← HashKG(Lpw,ℓ1), hp2 ← ProjKG(hk2,Lpw,ℓ1 , C2).

3. P2 sends (C2, hp2) to P1.

flow3(pw; r2):

1. P1 generates hk1
$← HashKG(Lpw,ǫ), hp1

$← ProjKG(hk1,Lpw,ǫ, C1).

2. P1 computes tk = Hash(hk1,Lpw,ǫ, C2) · ProjHash(hp2,Lpw,ℓ1 , C1, r1)

3. P1 chooses sk
$← {0, 1}k, computes c = ECC(sk)

4. P1 set ∆ = tk⊕ c.

5. P1 sends (∆, hp1) to P2.

Key computing for P2:

1. P2 computes tk = Hash(hk2,Lpw,ℓ1 , C1) · ProjHash(hp1,Lpw,ℓ2 , C2, r2,)

2. P2 recover the key sk = ECC−1(tk⊕∆)

Figure 5.7: Lattice-based PAKE from [KV09]

103

CRS generation:
param′ $← Setup(1K), (pk′, sk′)

$← KeyGen(param′)

CRS: ρ
$← SetupCom(1K), paramcpa

$← Setupcpa(1
K), pk′.

Pre-flow :

1. S generates a LWE key pair (pk, sk)
$← KeyGencpa(paramcpa) for E

2. S stores sk, completely erase random coins used by KeyGencpa, and sends
pk to R

Index query on s:

1. R chooses a random J , computes R← F (J) and c
$← Encryptcpa(pk, J)

2. R computes C ← Encrypt(pk′, ℓ, s; r) with ℓ = (sid, ssid,R,S)

3. R stores r,R, completely erases the random coins used and sends C and
c to S.

Database input (m1, . . . ,mn):

1. S computes J ← Decryptcpa(sk, c) and gets R← F (J)

2. For k = 1, . . . , n

• S computes hkk
$← HashKG(Lk,ℓ), hpk ← ProjKG(hkk,Lk,ℓ, C),

tk← Hash(hkk,Lk,ℓ, C),

• S chooses skk
$← {0, 1}m, sets ek = ECC(skk), and ∆k = tkk ⊕ ek

• S computes Qk ← R⊕ skk ⊕mk

3. S erases everything except (hpk, Qk,∆k)k=1,...,n and sends it to R

Data recovery:
Upon receiving (hpt, Qt)t=1,...,k,R computes tks ← ProjHash(hps,LG(s),ℓ, C, r),

sks = ECC−1(∆s⊕ tks), ms ← R⊕ sks⊕Qs, and erases everything besides ms.

Figure 5.8: 1-out-of-n OT from Lattice-based PAKE

However, since with our framework the server does not need to commit to his
password (the line index here), we can slightly modify the protocol and end up
with the OT protocol exposed on Figure 5.8.

The security proof of this construction is a little beyond the point of this trans-
formation, as the resulting scheme is not UC-Secure14, however the BPR security
of the PAKE ensures some minimum requirements.

As a participant in the PAKE cannot learn the other password, this ensures that
even after seeing the receiver’s flows, the server does not learn the line requested.

Similarly, since in case of password mismatch, a user cannot guess the key
computed by the other one, this ensures that the user accesses at most one line.

14There is a problem to simulate an honest user. The Index query cannot be equivocated as
the approximate SPHF Smoothness prevents the simulator to this circumvent this requirement.

104

In terms of efficiency, the resulting Oblivious Transfer ends up being slightly
more efficient than both UC constructions from [GH08,BC15], but this comes
at no surprise considering the security requirement gap. However this remains
promising for the validity of our framework.

5.2.4 Very Efficient Oblivious Transfer from QA-NIZK

We now consider the instantiation from [JR15] in which the UC-PAKE allows
for each party to hide his own password. As before, we first recall their protocol
and then show how to use it in order to instantiate a new UC-secure Oblivious
Transfer. This OT scheme ends up being the most efficient to date, as we show
by comparing to the recent [BC16] in Table 5.11.

Interestingly this protocol does not use Smooth Projective Hash Function, but
Quasi Adaptive Non-Interactive Zero Knowledge proofs [JR13]. It is presented
in Figure 5.9.

A Quasi Adaptive Non-Interactive Zero Knowledge Argument is a NIZK (2.6)
argument where the soundness property is computational but adaptive. Let us
describe formally what is a Quasi Adaptive Non-Interactive Zero Knowledge
Argument.

Definition 30 ((Labelled) Quasi Adaptive Non-Interactive Zero Knowledge
Argument). Assuming a randomness distribution Dparam (for a public set of pa-
rameters param) and a set of languages {Lρ}ρ parameterized by a randomness
ρ← Dparam and associated with a relation Rρ (meaning that a word x belongs to
Lρ if and only if there exists a witness w such that Rρ(x,w) holds), a QA-NIZK
argument Π for this set of languages {Lρ}ρ consists of five probabilistic polyno-
mial time (PPT) algorithms Π = (Genparam,Gencrs,Prove, Sim,Ver) defined as
follows:

• Genparam(K) returns the public parameters param.
• Gencrs(param, ρ) returns a common reference string crs and a trapdoor tk.

We assume that crs contain the parameters param, a description of the
language Lρ and a description of a label space L.

• Prove takes as input crs, a label ℓ ∈ L, a word x of the language Lρ and
a witness w corresponding to this word. If (x,w) /∈ Rρ, it outputs failure.
Otherwise, it outputs a proof π.

• Ver takes as input crs, a label ℓ, a word x and a proof π. It outputs a bit
b (either 1 if the proof is correct, or 0 otherwise).

• Sim takes as input crs, a trapdoor tk, a label ℓ ∈ L and a word x. It outputs
a proof π for x (not necessarily in Lρ) with respect to the label ℓ.

These algorithms must satisfy the following properties

Perfect Completeness: for all PPT adversary A, all security parameter K,
all public parameters param ← Genparam(K), all randomness ρ ← Dparam, all
label ℓ ∈ L and all (x,w) ∈ Rρ, the following holds:

Pr[(crs, tk)← Gencrs(param, ρ);π ← Prove(crs, ℓ, x, w) : Ver(crs, ℓ, x, π) = 1] = 1

105

CRS generation:
g1

$← G1, g2
$← G2, a, c, o, d, e, u1, u2

$← Zp, H
$← H

Set A = ga1 , D = gd1 , E = ge1, U1 = gu1

1 , U2 = gu2

1 ∈ G1

And B = gc2, O = go2, V1 = gu1c−d−oa
2 , V2 = gu2c−e

2 ∈ G2

crs := (g1, g2, A,B,O, F,D,E, U1, U2, V1, V2, H)

flowb(pw; (rb, sb)):

1. Pb computes Rb = grb1 , Sb = pw · Arb , Tb = (D · Ehb)rb , ρ̂b = Bsb ,Wb =

(U1 · U
hb

2)rb , where hb = H(sid, ssid, Pb, Pb̄, R1, S1, ρ̂b)

2. Pb erases rb, sends Rb, Sb, Tb, ρ̂b and keeps Wb.

Key computing:

1. Pb computes hb̄ = H(sid, ssid, Pb̄, Pb, Rb̄, Sb̄, ρ̂b̄)

Checks that all elements are consistent, and computes:

ρ = gsb2 , θ = Osb , γ = (V1 · V
hb̄

2)sb

sk = e(Tb̄, ρ) · e(Sb̄/pw, θ) · e(Rb̄, γ) · e(Wb, ρ̂b̄)

Figure 5.9: UC secure PAKE from [JR15]

Computational Adaptive Soundness: For a given security parameter K, a
scheme achieves computational adaptive soundness if for all PPT adversary A,
the probability

Pr[param← Genparam(K); ρ← Dparam; (crs, tk)← Gencrs(param, ρ);
(ℓ, x, π)← A(param, crs, ρ) : x /∈ Lρ ∧ Ver(crs, ℓ, x, π) = 1]

is negligible.

Perfect Zero-Knowledge: for all K, all param ← Genparam(K), all ρ ←
Dparam, all (crs, tk) ← Gencrs(param, ρ), all label ℓ ∈ L and all (x,w) ∈ Rρ,
the distributions Prove(crs, ℓ, x, w) and Sim(crs, tk, ℓ, x) are the same.

QA-NIZK-based PAKE

As explained in the original paper [JR15], the scheme is loosely-based on Quasi-
Adaptive NIZK, in the sense that the flows use computation very close to what
would be expected. In the figure 5.9, H is a family of hash functions.

5.2.5 Applying the Framework to Obtain a UC-Secure OT Scheme

Using the instantiation from [JR15] described in Figure 5.9, we apply our frame-
work and directly obtain the protocol described in Figure 5.10.

The function G is assumed to map line numbers to group elements, and it should
be collision-resistant and efficiently computable. One can use for example, the
G function from Lindell in [Lin11].

106

CRS generation:
g1

$← G1, g2
$← G2, a, c, o, d, e, u1, u2

$← Zp, H
$← H

Sets A = ga1 , D = gd1 , E = ge1, U1 = gu1

1 , U2 = gu2

1 ∈ G1

And B = gc2, O = go2, V1 = gu1c−d−oa
2 , V2 = gu2c−e

2 ∈ G2

crs := (g1, g2, A,B,O, F,D,E, U1, U2, V1, V2, H)

Pre-Flow:

1. S generates (pk = f1 = gα1 , sk = α
$← Zp)

2. S erases random coins, keeps sk and sends pk.

Index query on i:

1. R picks J
$← G1, s

$← Zp, sets mask← F (J) and c = (f s
1J, g

s
1)

2. R picks r
$← Zp computes R = gr1, S = G(i) ·Ar, T = (D ·EhR,S)r,W =

(U1 · U
hR,S

2)r, where hR,S = H(sid, ssid,R,S, R, S, c)

3. R erases r, s, J , sends c, C = (R,S, T) and keeps W,mask.

Database answer:

1. S sets J = c1/c
α
2 , mask = F (J) and hR,S = H(sid, ssid,R,S, R, S, c)

2. For k = 1, . . . , n:

(a) Picks sk
$← Zp

(b) Sets ρk = Bsk , ρ′k = gsk2 , θk = Osk , γk = (V1 · V
hR,S

2)sk

(c) Computes KR,S,k = e(T, ρ′k) · e(S/G(k), θk) · e(R, γk)

(d) Sets Qk = Lk ⊕H(KR,S,k ⊕mask)

3. S sends all (Qk, ρk)k∈J1,nK and erases everything else.

Data recovery:
R computes KR,S,i = e(W,ρi), and recovers Li = Qi ⊕H(KR,S,i ⊕mask)

Figure 5.10: UC secure OT from QA-NIZK

107

Theorem 14. As the PAKE was UC-Secure in presence of adaptive corruption
under SXDH, and ElGamal is IND-CPA under SXDH too, the Oblivious Transfer
scheme presented in Figure 5.10 is a secure 1-out-of-n Oblivious Transfer, with
the same handling of corruptions as the PAKE protocol under SXDH.

The PAKE scheme directly fits in the framework, hence the security is inherited
from the initial PAKE proven secure in [JR15].

The same basic arguments apply: We first start by switching the crs so as to
be able to simulate password openings, which will allow an honest receiver to
commit to a dummy line value, and retroactively compute the opening value
for any possible line s. On the other hand, an honest server will extract the
committed line number, and provide dummy answers for all the other ones. If
the receiver is honest, then the server will also send a dummy answer for the
valid line, since the encrypted value S provides the extra degree of freedom to
open to any line value Lk provided belatedly by the environment.

Efficiency Comparison We compare our efficient UC secure Oblivious Trans-
fer with recent ones. This is depicted in figure 5.11. Note that in the case where
there are many queries for the same database the adaptive OT from Section 4.3
will be more efficient.

Communication cost comparisons of various Elliptic Curve based OT schemes

Paper Assumption # Group elements # Rounds

Adaptive Security (1-out-of-2)

[ABB+13] SXDH 12 G1 + 1 G2 + 2Zp 3
[BC15]15 DDH 15 G+ 2 Zp 3
[BC16] SXDH 12 G1 + 4 G2 + 2 Zp 3

This paper SXDH 6 G1 + 2 G2 + 2 Zp 3

Adaptive Security (1-out-of-n)

[ABB+13] SXDH log n G1 + (n+ 8 log n) G2 + n Zp 3
[BC15]15 DDH (n+ 9 log n+ 4) G+ 2n Zp 3
[BC16] SXDH 4 G1 + (4n+ 4) G2 + n Zp 3

This paper SXDH 4 G1 + (n+ 2) G2 + n Zp 3

Figure 5.11: Comparison to existing Oblivious Transfer

15It should be noted that the [BC15] OT does not rely on pairings. Classical implementations
suggest that the elements in one of the groups in our scheme will be at least twice as big
as those from the non-pairing curve, which would give roughly the same efficiency between
both schemes in the 1-out-of-2 case, with an edge for the [BC15] construction in term of
computational requirements. However, the scaling in their paper is then worse when increasing
the number of lines (see the 1-out-of-n case).

108

Chapter 6

Conclusion

Conclusion In this thesis we explored a lot of possible applications to Identity-
based Cryptography, creating new Identity-based primitives each time we needed
them. Sometimes new kind of primitives like DIBE and sometimes new instan-
tiation/transformation like our transformation from IBE to BIBE. Also we fo-
cused on Oblivious Transfer itself with and without Smooth Projective Hash
Functions. They were useful to find an instantiation of OLBE and secure our
adaptive version of the OT but too slow to create a very fast OT.

Open Problems and future Work There are different axes of research in
this thesis which leads to different future works. I think that since a lot of
this thesis is based on IBE any new IBE with better efficiency could impact
most of it. Indeed better building blocks allow better transformations. For
example if we could find a tightly-secure DIBE, this will increase the impact of
our work and give a more practical scheme. In my opinion our transformation
from DIBE to ABE could be a starting point for future works. First the DIBE
scheme itself is new and can maybe find different uses. We already describe
how it can instantiate some IBE’s variant, it would be interesting to check
every applications of these primitives and see if our efficient instantiation can
solve practicality problems. Secondly the fact that the access structure of the
ABE has to be a DNF formula is a bit restrictive, it would be great to generalize
to any kind of access structure without increasing the communication cost that
much e.g. staying linear in the number of attributes.

109

Bibliography

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice
(H)IBE in the standard model. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Hei-
delberg, May 2010.

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Cheva-
lier, and David Pointcheval. SPHF-friendly non-interactive com-
mitments. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234.
Springer, Heidelberg, December 2013.

[ACD+06] Michel Abdalla, Dario Catalano, Alex Dent, John Malone-Lee, Gre-
gory Neven, and Nigel Smart. Identity-based encryption gone wild.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo We-
gener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages
300–311. Springer, Heidelberg, July 2006.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth
projective hashing for conditionally extractable commitments. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
671–689. Springer, Heidelberg, August 2009.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Har-
alambiev, and Miyako Ohkubo. Structure-preserving signatures
and commitments to group elements. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer,
Heidelberg, August 2010.

[AKN07] Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key
delegation for hierarchical identity-based encryption. In Joachim
Biskup and Javier López, editors, ESORICS 2007, volume 4734 of
LNCS, pages 139–154. Springer, Heidelberg, September 2007.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in
prime-order groups via computational pair encodings. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 591–623. Springer, Heidelberg, De-
cember 2016.

110

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure iden-
tity based encryption without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 223–238. Springer, Heidelberg, May 2004.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David
Pointcheval, and Damien Vergnaud. Efficient UC-secure authen-
ticated key-exchange for algebraic languages. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS,
pages 272–291. Springer, Heidelberg, February / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David
Pointcheval, and Damien Vergnaud. New techniques for SPHFs and
efficient one-round PAKE protocols. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
449–475. Springer, Heidelberg, August 2013.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity
based encryption with constant size ciphertext. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456.
Springer, Heidelberg, May 2005.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group sig-
natures. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 41–55. Springer, Heidelberg, August 2004.

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of UC-
secure oblivious transfer. In Tal Malkin, Vladimir Kolesnikov, Al-
lison Bishop Lewko, and Michalis Polychronakis, editors, ACNS
15, volume 9092 of LNCS, pages 65–86. Springer, Heidelberg, June
2015.

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth
projective hashing. In Jung Hee Cheon and Tsuyoshi Takagi, ed-
itors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
339–369. Springer, Heidelberg, December 2016.

[BCG16] Olivier Blazy, Céline Chevalier, and Paul Germouty. Adaptive
oblivious transfer and generalization. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032
of LNCS, pages 217–247. Springer, Heidelberg, December 2016.

[BCG17] Olivier Blazy, Céline Chevalier, and Paul Germouty. Almost opti-
mal oblivious transfer from QA-NIZK. In Dieter Gollmann, Atsuko
Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of
LNCS, pages 579–598. Springer, Heidelberg, July 2017.

[BCGJ17] Olivier Blazy, Emmanuel Conchon, Paul Germouty, and Amandine
Jambert. Efficient id-based designated verifier signature. Interna-

111

tional Conference on Availability, Reliability and Security, 12(44),
2017.

[BDNS07] James Birkett, Alexander W. Dent, Gregory Neven, and Jacob
C. N. Schuldt. Efficient chosen-ciphertext secure identity-based
encryption with wildcards. In Josef Pieprzyk, Hossein Ghodosi,
and Ed Dawson, editors, ACISP 07, volume 4586 of LNCS, pages
274–292. Springer, Heidelberg, July 2007.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption
from the Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001.

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine
Jambert, Hervé Sibert, and Damien Vergnaud. Batch Groth-Sahai.
In Jianying Zhou and Moti Yung, editors, ACNS 10, volume 6123
of LNCS, pages 218–235. Springer, Heidelberg, June 2010.

[BFPV11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien
Vergnaud. Signatures on randomizable ciphertexts. In Dario Cata-
lano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 403–422. Springer, Heidel-
berg, March 2011.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-
based encryption from affine message authentication. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, vol-
ume 8616 of LNCS, pages 408–425. Springer, Heidelberg, August
2014.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authen-
ticated key exchange secure against dictionary attacks. In Bart
Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
139–155. Springer, Heidelberg, May 2000.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-
optimal privacy-preserving protocols with smooth projective hash
functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 94–111. Springer, Heidelberg, March 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, October 2001.

[CCG+94] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis,
Johan Hastad, Desh Ranjan, and Pankaj Rohatgi. The random
oracle is false. Journal of Computer and System Sciences, 49(1):24–
39, 1994.

112

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant
of universally composable security for standard multiparty com-
putation. In Rosario Gennaro and Matthew J. B. Robshaw, edi-
tors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 3–22.
Springer, Heidelberg, August 2015.

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Obliv-
ious transfer with access control. In Ehab Al-Shaer, Somesh Jha,
and Angelos D. Keromytis, editors, ACM CCS 09, pages 131–140.
ACM Press, November 2009.

[CDVW12] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and
Hoeteck Wee. Efficient password authenticated key exchange via
oblivious transfer. In Marc Fischlin, Johannes Buchmann, and
Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
449–466. Springer, Heidelberg, May 2012.

[CFH+07] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and
Rui Zhang. Formal security treatments for signatures from identity-
based encryption. In Willy Susilo, Joseph K. Liu, and Yi Mu, edi-
tors, ProvSec 2007, volume 4784 of LNCS, pages 218–227. Springer,
Heidelberg, November 2007.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system
ABE in prime-order groups via predicate encodings. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, April
2015.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and
Philip D. MacKenzie. Universally composable password-based key
exchange. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 404–421. Springer, Heidelberg, May 2005.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bon-
sai trees, or how to delegate a lattice basis. In Henri Gilbert, ed-
itor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552.
Springer, Heidelberg, May 2010.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions
of key exchange and secure channels. In Lars R. Knudsen, edi-
tor, EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351.
Springer, Heidelberg, April / May 2002.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng
Zhou. Efficient, adaptively secure, and composable oblivious trans-
fer with a single, global CRS. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 73–88.
Springer, Heidelberg, February / March 2013.

113

[Coc01] Clifford Cocks. An identity based encryption scheme based on
quadratic residues. In Bahram Honary, editor, 8th IMA Inter-
national Conference on Cryptography and Coding, volume 2260 of
LNCS, pages 360–363. Springer, Heidelberg, December 2001.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In
Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
13–25. Springer, Heidelberg, August 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a
paradigm for adaptive chosen ciphertext secure public-key encryp-
tion. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332
of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the
Diffie-Hellman assumption. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 537–
569. Springer, Heidelberg, August 2017.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22(6):644–654,
1976.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge
Villar. An algebraic framework for Diffie-Hellman assumptions. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer,
Heidelberg, August 1984.

[EMJ17] Nadia El Mrabet and Marc Joye. Guide to pairing-based cryptogra-
phy. Chapman and Hall/CRC, 2017.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in
the common reference string model. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Hei-
delberg, August 2006.

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based en-
cryption and simulatable oblivious transfer. In Kaoru Kurosawa,
editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 265–282.
Springer, Heidelberg, December 2007.

114

[GH08] Matthew Green and Susan Hohenberger. Universally compos-
able adaptive oblivious transfer. In Josef Pieprzyk, editor, ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 179–197. Springer,
Heidelberg, December 2008.

[GHPT17] Philippe Gaborit, Adrien Hauteville, Duong Hieu Phan, and Jean-
Pierre Tillich. Identity-based encryption from codes with rank met-
ric. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 194–224. Springer, Heidel-
berg, August 2017.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-
based authenticated key exchange. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, Hei-
delberg, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital
signature scheme secure against adaptive chosen-message attacks.
SIAM Journal on Computing, 17(2):281–308, April 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM Journal on
Computing, 18(1):186–208, 1989.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–
206. ACM Press, May 2008.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptog-
raphy. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501
of LNCS, pages 548–566. Springer, Heidelberg, December 2002.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems
for bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April
2008.

[Gui13] Aurore Guillevic. Comparing the pairing efficiency over composite-
order and prime-order elliptic curves. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini,
editors, ACNS 13, volume 7954 of LNCS, pages 357–372. Springer,
Heidelberg, June 2013.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28(4):1364–1396, 1999.

115

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK
proofs for linear subspaces. In Kazue Sako and Palash Sarkar, edi-
tors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20.
Springer, Heidelberg, December 2013.

[JR15] Charanjit S. Jutla and Arnab Roy. Dual-system simulation-
soundness with applications to UC-PAKE and more. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 630–655. Springer, Heidelberg, Novem-
ber / December 2015.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 78–95. Springer, Heidelberg, May
2005.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective
hashing and password-based authenticated key exchange from lat-
tices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 636–652. Springer, Heidelberg, December 2009.

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-
based envelope. In Elizabeth Borowsky and Sergio Rajsbaum, edi-
tors, 22nd ACM PODC, pages 182–189. ACM, July 2003.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commit-
ments based on the DDH assumption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 446–466.
Springer, Heidelberg, May 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for
attribute-based encryption: Achieving full security through selec-
tive techniques. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 180–198. Springer,
Heidelberg, August 2012.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably
secure against chosen ciphertext attacks. In 22nd ACM STOC,
pages 427–437. ACM Press, May 1990.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure func-
tional encryption with general relations from the decisional linear
assumption. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 191–208. Springer, Heidelberg, August 2010.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Hei-
delberg, August 1992.

116

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext attack. In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
433–444. Springer, Heidelberg, August 1992.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signature and public-key cryptosys-
tems. Communications of the Association for Computing Machin-
ery, 21(2):120–126, 1978.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk.
Universal designated-verifier signatures. In Chi-Sung Laih, editor,
ASIACRYPT 2003, volume 2894 of LNCS, pages 523–542. Springer,
Heidelberg, November / December 2003.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes.
In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume
196 of LNCS, pages 47–53. Springer, Heidelberg, August 1984.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 457–473. Springer, Heidelberg, May 2005.

[Wat05] Brent R. Waters. Efficient identity-based encryption without ran-
dom oracles. In Ronald Cramer, editor, EUROCRYPT 2005, vol-
ume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure
IBE and HIBE under simple assumptions. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer,
Heidelberg, August 2009.

[Zhe97] Yuliang Zheng. Digital signcryption or how to achieve
cost(signature & encryption)≪ cost(signature) + cost(encryption).
In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 165–179. Springer, Heidelberg, August 1997.

117

Abstract

We investigate the possibilities that Identity-based Encryption offers when
used out of their original purpose. We manage to generalize a whole class of
different identity-based encryption schemes into Downgradable Identity-based
Encryptions. We found a generic way to construct Blind Identity-based Encryp-
tions. These two works lead both to applications that are not a priori linked
with IBE: Attribute-based Encryption from Downgradable IBE and Oblivious
Transfer from Blind IBE. In the case of Affine IBE we manage to reduce the com-
munication cost from linear to logarithmic. As application we also find a way
to use Hierarchical IBE to construct a special type of signature called Identity-
based Designated Verifier Signature. We continue the research out of the context
of IBE’s application with Oblivious Transfer. We manage to generalize the con-
cept of Oblivious Transfer into a new protocol called Oblivious Language-based
Envelope encompassing many kind of protocols. Finally, we construct Oblivi-
ous Transfer with a very different primitive called Password Authenticated Key
Exchange. Surprisingly, with some optimizations this last transformation leads
to a very efficient Oblivious Transfer Protocol. The Identity-based Encryption
is our main basis of work, thus efficient instantiations of this primitive were the
key of our own efficiency, thus we used the instantiation from Blazy et als at
CRYPTO’14 which is efficient, tight secure and affine.

Résumé

Dans cette thèse nous étudions les possibilités que les chiffrements basés sur
l’identité offrent quand ils sont utilisés dans un but différent qu’un simple
chiffrement. Nous avons pu généraliser différents types de chiffrement basés
sur l’identité en une nouvelle primitive nommé Downgradable Identity-based
Encryption (DIBE). Nous avons trouvé un moyen générique de transformer de
simple IBE en des IBE en blanc, dans le cas où l’IBE est affine nous rendons
le coût de communication très faible (de linéaire à logarithmique). Ces deux
primitives ont donné lieux à différentes applications : les chiffrements basés sur
les attributs pour la première et le transfère inconscient pour la deuxième. Une
autre application est l’utilisation d’IBE hiérarchiques pour créer des signatures
à vérifieur désigné basées sur l’identité. Ensuite nous nous avons regardé le
transfère inconscient seul et avons réussi à le généraliser en un nouveau protocole
nommé Oblivious Language-based Envelope. Finalement, nous avons construit
une transformation d’un protocole à un autre, d’un echange authentifié de clés
par mot de passe nous avons construit un transfère inconscient. En prenant une
instantiation particulère nous obtenons un protocole plus efficace que tous les
précédents pour le même niveau de sécurité. La primitive chiffrement basé sur
l’identité est notre outil principal pour réaliser nos constructions. Nous avons
donc besoin d’une instantiation efficace de cette primitive. Nous avons utilisé
celle de Blazy Kiltz et Pan à CRYPTO’14 qui est très efficace mais possède
aussi une structure particulière dite affine.

118

