Caractérisation par imagerie TEP 18F-FDG de la maladie d’Alzheimer à début précoce
Auteur / Autrice : | Matthieu Vanhoutte |
Direction : | Franck Semah, Renaud Lopes |
Type : | Thèse de doctorat |
Discipline(s) : | Neurosciences |
Date : | Soutenance le 13/12/2018 |
Etablissement(s) : | Université de Lille (2018-2021) |
Ecole(s) doctorale(s) : | École graduée Biologie-Santé (Lille ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Troubles cognitifs dégénératifs et vasculaires (Lille) - Troubles cognitifs dégénératifs et vasculaires |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
La maladie d’Alzheimer (AD) est la principale cause de démence neurodégénérative, caractérisée à 95% par des formes tardives (LOAD) qui présentent des troubles mnésiques et progressent lentement. Cependant, environ 5% des patients atteints d’AD présentent une forme précoce de la maladie (EOAD) débutant avant 65 ans. Bien que le substratum lésionnel soit identique à la LOAD, l’EOAD est caractérisée par une plus grande sévérité des dépôts de plaques amyloïdes, des enchevêtrements neurofibrillaires et de l’atrophie cérébrale. De plus, l’EOAD est plus hétérogène que la LOAD, car même si la majorité des troubles sont mnésiques il existe une proportion importante de formes atypiques affectées par des troubles du langage, visuospatiaux ou exécutifs. Bien que de nombreuses études en imagerie TEP 18F-FDG aient permis de caractériser métaboliquement l’EOAD par rapport à la LOAD ou à un groupe de contrôles sains, très peu différentiaient pas les formes typiques (mnésiques) des formes atypiques. Dans ce travail de thèse, nous avons examiné les données d’imagerie TEP 18F-FDG, complémentées par l’IRM structurelle, afin d’améliorer la caractérisation et la compréhension des formes typiques et atypiques d’EOAD. Suite à un premier travail d’harmonisation des reconstructions TEP 18F-FDG entre deux machines GE et Siemens ayant toutes deux servies à l’acquisition des données patients, notre second objectif a été d’étudier à l’inclusion sur le cerveau entier les patterns hypométaboliques caractéristiques des différentes formes d’EOAD et leurs corrélations potentielles avec la performance neuropsychologique. Cette étude a montré que chaque forme clinique d’EOAD était caractérisée par des patterns hypométaboliques spécifiques fortement corrélés aux symptômes cliniques et aux scores neuropsychologiques du domaine cognitif associé. Par la suite, nous nous sommes intéressés à la progression sur 3 ans de l’hypométabolisme sur la surface corticale en fonction des formes typiques ou atypiques d’EOAD. Bien que des patterns similaires d’évolution de l’hypométabolisme entre les formes typiques et atypiques aient été observés au niveau du cortex pariétal, seules les formes atypiques ont présenté une réduction du métabolisme bilatérale plus importante au niveau du cortex orbito-frontal latéral associée à des déclins cognitifs plus sévères. Temporellement, les résultats suggèrent que l’hypométabolisme chez les formes typiques progresserait selon un axe antérieur-vers-postérieur en cohérence avec les stades de Braak et Braak, alors que l’hypométabolisme chez les formes atypiques progresserait selon un axe postérieur-vers-antérieur. Pris ensemble, ces résultats confortent l’hypothèse d’une distribution différente de la pathologie tau en termes de charge et d’évolution temporelle entre ces deux formes d’EOAD. Notre dernier objectif a été de déterminer les capacités discriminatives des données TEP 18F-FDG, seules ou combinées aux données de l’IRM structurelle, afin de classifier de manière automatique et supervisée des patients atteints d’EOAD en forme typique ou atypique. Nous avons mis en application des algorithmes de machine learning combinés à des méthodes de validation croisée afin d’évaluer les influences de diverses composantes sur les performances de classification. Des précisions équilibrées maximales égales à 80,8% en imagerie monomodale TEP 18F-FDG et 92,4% en imagerie multimodale TEP 18F-FDG/IRM T1 ont été obtenues, validant ainsi la TEP 18F-FDG comme un biomarqueur sensible de l’EOAD et soulignant l’apport incontestable de la multimodalité. En conclusion, nos travaux ont permis une meilleure caractérisation et compréhension des formes cliniques d’EOAD, ouvrant la voie à un management personnalisé du patient et des traitements plus efficaces pour ces formes distinctes.