Thèse soutenue

Alliages à base de GaAs pour applications optoélectroniques et spintroniques

FR  |  
EN
Auteur / Autrice : Sawsen Azaizia
Direction : Hélène CarrèreAndréa Balocchi
Type : Thèse de doctorat
Discipline(s) : Photonique et systemes optoelectronique
Date : Soutenance le 10/09/2018
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : ECOLE DOCTORALE GENIE ELECTRIQUE, ELECTRONIQUE, TELECOMMUNICATIONS
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique et Chimie des Nano-objets - Laboratoire de physique et chimie des nano-objets / LPCNO
Jury : Président / Présidente : Chantal Fontaine
Examinateurs / Examinatrices : Hélène Carrère, Andréa Balocchi, Vinh Le thanh, Laurent Lombez, Simone Mazzucato
Rapporteurs / Rapporteuses : Vinh Le thanh, Laurent Lombez

Résumé

FR  |  
EN

Ce travail de thèse est consacré à l’étude et au contrôle des propriétés de spin des électrons dans des structures à base de semi-conducteurs GaAs : GaAsN, GaAsBi et InGaAs. L'objectif est de donner une description fine de leurs propriétés électronique afin d'appréhender leur potentiel pour des applications en optoélectronique et spintronique. Nous avons focalisé l'étude des propriétés de spin des semi-conducteurs à base de nitrure dilué GaAsN sur les propriétés de l'interaction hyperfine entre l'électron et les noyaux des centres paramagnétiques naturellement présents dans ces matériaux. L'étude est réalisée par des expériences de photoluminescence pompe-sonde, en tirant parti du mécanisme de filtrage de spin par les centres paramagnétiques profonds présents dans le GaAsN massif : la recombinaison dépendante du spin (SDR). Nous démontrons, via l'enregistrement de la dynamique de la photoluminescence bande à bande, une nouvelle technique de détection des oscillations de spin cohérentes électron-noyau dues à l'interaction hyperfine. Ces oscillations sont observées dans l'application d'un champ magnétique externe et sans la nécessité d'utiliser les techniques de résonance de spin électronique. La caractérisation des matériaux bismures dilués GaAsBi en couches massives et en puits quantiques élaborés par épitaxie par jet moléculaire avec différentes concentrations de bismuth avec des expériences de spectroscopie de photoluminescence résolue en temps et en polarisation permet l’étude des propriétés de spin des électrons. Les résultats expérimentaux ont révélé une nette diminution du temps de relaxation de spin des électrons lorsque la fraction de bismuth augmente. Cette réduction significative du temps de relaxation de spin est liée à l'augmentation du couplage spin-orbite dans le matériau GaAsBi. La dynamique de relaxation observée est en bon accord avec le modèle de D'yakonov-Perel. Une troisième étude a porté sur le contrôle et la manipulation de spin des électrons dans les puits quantiques à semi-conducteurs III-V InGaAs/GaAs. Les hétérostructures élaborées sur des substrats d'orientation (111) présentent des propriétés de symétries particulières, qui combinées aux propriétés piézoélectriques, permettent sans application d’un champ électrique externe, de bloquer ou accélérer la dynamique de relaxation de spin. Ces observations démontrent la possibilité de contrôler le spin des porteurs à l'aide des propriétés intrinsèques de structures à puits quantiques, ce qui en fait de très bons candidats pour des applications futures de traitement et de stockage de l'information quantiques.