Thèse soutenue

Remodelage de réseaux d'échangeurs de chaleur : collecte de données avancée, diagnostic énergétique et flexibilité

FR  |  
EN
Auteur / Autrice : Lucille Payet
Direction : Gilles HétreuxRaphaële Théry Hétreux
Type : Thèse de doctorat
Discipline(s) : Génie industriel
Date : Soutenance le 30/11/2018
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie chimique (Toulouse ; 1992-....)
Jury : Président / Présidente : Pascal Floquet
Examinateurs / Examinatrices : Gilles Hétreux, Raphaële Théry Hétreux, Pascal Floquet, Jean-Noël Jaubert, Isabelle Pitault, Assaad Zoughaib
Rapporteurs / Rapporteuses : Jean-Noël Jaubert, Isabelle Pitault

Résumé

FR  |  
EN

Dans un contexte de transition énergétique et numérique, L’Usine du Futur se définit commeéconome en énergie, mais aussi agile grâce à des moyens de production flexibles etreconfigurables. Conférer ces propriétés aux procédés existants est un challenge complexe quiinduit souvent une réorganisation des unités. Dans ce cadre, la méthodologie RREFlex a pourobjectif de proposer des solutions alternatives d’intégration énergétique à la fois viables, robusteset adaptables via le remodelage des réseaux d’échangeurs de chaleur déjà installés.Contrairement à la conception initiale consistant à réaliser de manière conjointe la conception duprocédé et du réseau d’échangeur de chaleur associé, l’exercice de remodelage d’unitésexistantes peut s’avérer sensiblement plus complexe. En effet, il s’inscrit souvent dans unedémarche d’amélioration continue sur des installations ayant déjà connu au cours de leur vie destransformations pour faire face aux évolutions de la demande ou à de nouvelles contraintesenvironnementales. Aujourd’hui, nombre d’analyses de récupération énergétique sont réaliséessur les sites industriels mais celles-ci ne donnent pas nécessairement lieu à des réalisationsconcrètes. Les raisons le plus souvent invoquées sont d’ordre financières mais aussi, pratiques.En effet, les solutions proposées ne sont pas toujours réalistes d’un point de vue opérationnellecar elles tiennent rarement compte de la variabilité du procédé, soit due à des perturbations nonmaitrisées sur les températures et les débits, soit due à la présence de multiples points defonctionnement (changement de campagne, évolution de la charge, etc.). De plus, ces solutionstiennent peu compte des contraintes spécifiques du site étudié (topologie des unités, compatibilitédes courants, sécurité, etc.), la formulation a priori de ces dernières ne pouvant être exhaustive.L’outil RREFlex - outil Robuste pour la synthèse de Réseaux d’Echangeurs Flexibles - a étédéveloppée pour pallier autant que possible ces limites. S’appuyant sur une analyse statistiquedes historiques de mesures remontés en salle de contrôle, un premier module - EDiFy : EnhancedData collection for Flexibility analysis - permet de localiser et de caractériser les différents cas demarche des unités. Notamment, la valeur moyenne et la variance des données caractéristiques duprocédé (températures, flux calorifiques) sont estimées pour chaque cas de marche. Ce jeu dedonnées étant souvent incomplet, il est nécessaire d’avoir recours à un modèle de simulation duprocédé pour le compléter et valider la cohérence des données mesurées pour chaque cas demarche potentiellement identifié. Sur cette base, une seconde étape dédiée au diagnosticénergétique permet d’évaluer la pertinence des échangeurs de récupération déjà installés. Cetteanalyse permet d’identifier et de prioriser un ensemble de scenarii de remodelage considéréscomme prometteurs. Chacun d’eux est défini par la liste des échangeurs à reconsidérer et uncertain nombre de paramètres de configuration. Chaque scenario retenu est alors exploité pour lasynthèse du réseau d’échangeurs associé. Cette étape s’appuie sur un modèle de programmationlinéaire mixte multi-période (PLM) pour déterminer la nouvelle topologie du réseau d’échangeurs.Dans ce cadre, le modèle a évidemment la possibilité d’introduire de nouveaux échangeurs maisaussi de déplacer les échangeurs existants et conservés dans un scénario donné, tant qu’ilscouplent la même paire de courant qu’initialement. Les réseaux obtenus sont donc adaptables auxdifférents cas de marche identifiés à la première étape et reconfigurable grâce à l’implantation deby-pass. Le panel de réseaux proposés est enfin évalué et classé au moyen d’indicateurs deperformance, dont notamment la robustesse vis-à-vis de la variabilité du procédé. L’approche aété validée sur deux sites de dimension industrielle: un procédé de fabrication de MVC et un trainde préchauffe de pétrole brut