Etude de l'injection d'eau avec évaporation dans un cœur de réacteur nucléaire hétérogène hautement dégradé
Auteur / Autrice : | Ali Swaidan |
Direction : | Michel Quintard, Florian Fichot |
Type : | Thèse de doctorat |
Discipline(s) : | Surfaces Interfaces Continentales Hydrologie |
Date : | Soutenance le 05/02/2018 |
Etablissement(s) : | Toulouse, INPT |
Ecole(s) doctorale(s) : | École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Institut de mécanique des fluides de Toulouse (1930-....) |
Jury : | Président / Présidente : Dominique Gobin |
Examinateurs / Examinatrices : Michel Quintard, Florian Fichot, Dominique Gobin, Frédéric Topin, Pablo Rubiolo, Andrea Bachrata | |
Rapporteur / Rapporteuse : Frédéric Topin, Pablo Rubiolo |
Mots clés
Résumé
Les accidents graves résultant de la fusion d’un coeur de réacteur nucléaire doivent être anticipés pour améliorer l’efficacité de leur mitigation. De tels accidents sont survenus à TMI-2 (1979) et à Fukushima (2011). Suite à un accident de perte de refroidissement, l’échauffement du coeur et l’oxydation de la gaine de combustible suivie d’un renoyage (injection d’eau) peuvent entraîner l’effondrement des barres de combustible et la formation d’un lit de débris dans le coeur. La vapeur produite lors du renoyage peut activer l’oxydation exothermique du Zircaloy, entraînant la fusion partielle des matériaux. Cette évolution engendre des zones à porosité réduite limitant la pénétration de l’eau et/ou des zones imperméables. Dans cette situation, l’efficacité de l’injection d’eau dans le coeur pour arrêter la progression de la dégradation et empêcher la fusion du coeur du réacteur peut être considérablement réduite. Dans ce cadre, l’IRSN a lancé le programme PEARL visant à étudier la thermohydraulique du renoyage des lits de débris chauds entourés d’une zone plus perméable simulant la présence de zones intactes ou moins endommagées dans le coeur. Dans cette thèse, les expériences PEARL ont été modélisées et simulées avec ICARE/CATHARE pour évaluer l’évolution d’un renoyage d’un lit de débris surchauffé entouré d’un bypass de perméabilité plus grande. La thermohydraulique du processus a été analysée et l’effet de différents paramètres (géométrie, conditions aux limites) sur le comportement de renoyage a été évalué. Sous certaines conditions, l’entraînement de l’eau dans le bypass a été identifié et évalué. Un modèle analytique a été mis au point ensuite pour étudier de façon approfondie le renoyage d’un milieu poreux hétérogène surchauffé composé de deux lits de débris de perméabilité et de porosité différentes et pour décrire l’entraînement de l’eau dans le bypass. Ce modèle calcule les principales variables caractérisant le processus de renoyage, telles que la vitesse du front de trempe, le taux de conversion eau-vapeur et le débit d’eau entraîné dans le bypass.Il fournit de bons résultats qualitatifs et quantitatifs concernant la redistribution du débit d’eau par rapport aux résultats expérimentaux. Ce modèle a plusieurs avantages. Il est écrit sous une forme plutôt générale incluant les termes de correction de Forchheimer et les termes croisés non nuls dans l’équation de Darcy-Forchheimer généralisée. Les différentes options des équations de quantité de mouvement proposées, y compris les changements dans les corrélations et les lois de frottement interfacial, peuvent être testées facilement. La comparaison des calculs avec les résultats expérimentaux indique qu’il est nécessaire d’inclure une loi de frottement interfacial pour obtenir de bonnes prédictions. L’extrapolation à l’échelle du réacteur est simple et des calculs ont été effectués pour évaluer l’impact des paramètres géométriques du lit de débris (granulométrie, porosité, dimensions) ainsi que les conditions thermiques et hydrauliques (température, pression, débit d’injection). Ainsi, le modèle est très utile pour estimer le temps de trempe total et latempérature maximale qui pourraient être atteinte dans le lit de débris à grande échelle. Cela permet d’évaluer la probabilité de réussite du renoyage d’un lit de débris chauds formé lors d’un scénario accidentel hypothétique.