Méthodes pour l'électroencéphalographie multi-sujet et application aux interfaces cerveau-ordinateur
Auteur / Autrice : | Louis Korczowski |
Direction : | Christian Jutten, Marco Congedo |
Type : | Thèse de doctorat |
Discipline(s) : | Signal image parole telecoms |
Date : | Soutenance le 17/10/2018 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....) |
Partenaire(s) de recherche : | Laboratoire : Grenoble Images parole signal automatique (2007-....) |
Jury : | Président / Présidente : Éric Moreau |
Examinateurs / Examinatrices : Laurent Bougrain | |
Rapporteur / Rapporteuse : François Cabestaing, Yannick Berthoumieu |
Résumé
L'étude par neuro-imagerie de l'activité de plusieurs cerveaux en interaction (hyperscanning) permet d'étendre notre compréhension des neurosciences sociales. Nous proposons un cadre pour l'hyperscanning utilisant les interfaces cerveau-ordinateur multi-utilisateur qui inclut différents paradigmes sociaux tels que la coopération ou la compétition. Les travaux de cette thèse comportent trois contributions interdépendantes. Notre première contribution est le développement d'une plateforme expérimentale sous la forme d'un jeu vidéo multijoueur, nommé Brain Invaders 2, contrôlé par la classification de potentiels évoqués visuels enregistrés par électroencéphalographie (EEG). Cette plateforme est validée par deux protocoles expérimentaux comprenant dix-neuf et vingt-deux paires de sujets et utilise différentes approches de classification adaptative par géométrie riemannienne. Ces approches sont théoriquement et expérimentalement comparées et nous montrons la supériorité de la fusion des classifieurs indépendants sur la classification d'un hypercerveau durant la seconde contribution. L'analyse de coïncidence des signaux entre les individus est une approche classique pour l'hyperscanning, elle est pourtant difficile quand les signaux EEG concernés sont transitoires avec une grande variabilité (intra- et inter-sujet) spatio-temporelle et avec un faible rapport signal-à-bruit. En troisième contribution, nous proposons un nouveau modèle composite de séparation aveugle de sources physiologiquement plausibles permettant de compenser cette variabilité. Une solution par diagonalisation conjointe approchée est proposée avec une implémentation d'un algorithme de type Jacobi. A partir des données de Brain Invaders 2, nous montrons que cette solution permet d'extraire simultanément des sources d'artéfacts, des sources d'EEG évoquées et des sources d'EEG continues avec plus de robustesse et de précision que les modèles existants.