Thèse soutenue

Étude des mémoires résistives (RRAM) à base d’HfO2 : caractérisation et modélisation de la fiabilité des cellules mémoire et des nouveaux dispositifs d'accès (Sélecteurs)

FR  |  
EN
Auteur / Autrice : Mouhamad Alayan
Direction : Barbara De Salvo
Type : Thèse de doctorat
Discipline(s) : Nano electronique et nano technologies
Date : Soutenance le 24/04/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Observatoire des micro et nanotechnologies (Grenoble, Isère, France ; 2005-2018?)
Jury : Président / Présidente : Gérard Ghibaudo
Examinateurs / Examinatrices : Luca Larcher, Elisa Vianello
Rapporteurs / Rapporteuses : Abdelkader Souifi, Marc Bocquet

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

L'écart de vitesse entre le processeur et la mémoire vive est devenu un point faible pour les performances des systèmes. En raison de ces limitations, de nombreuses mémoires émergentes ont été proposées comme solutions alternatives à ces problèmes existant dans la hiérarchie mémoire. Les mémoires résistives (RRAM) sont considérées comme des candidats pour la « storage class memory » (SCM), les mémoires non volatiles embarquées (eNVM), et les systèmes neuromorphique. Cependant, les problèmes de fiabilité tels que la rétention de données sont encore en cours d'amélioration. De plus, pour obtenir des matrices mémoires de grande densité, la RRAM a besoin des sélecteurs qui seront intégrer en série avec elle dans une architecture un-sélecteur une-résistance (1S1R). Le sélecteur est nécessaire avec le point mémoire pour éliminer les problèmes des courants de fuite, qui gênent le bon fonctionnement de la matrice mémoire dans des architectures crossbar et verticales 3D.Dans cette thèse, notre objectif principal est de traiter les défis ci-dessus. Notre travail peut être divisé en deux parties principales : i) l'étude de la fiabilité des cellules RRAM basées sur HfO2 et ii) la caractérisation des opérations de base et des performances des cellules RRAM basées sur HfO2 et qui sont co-intégrées avec deux types différents des sélecteurs. Pour la partie fiabilité, nous avons étudié les effets du dopage aluminium (Al) sur la rétention de données des cellules RRAM à base de HfO2. Des dispositifs à simple et double couche avec différentes concentrations d'aluminium ont été fabriqués et testés. A partir des comportements électriques macroscopiques, comme la dégradation du diélectrique en fonction du temps (TDDB) et l’opération de forming avec des rampes de tension, on a extrait des propriétés microscopiques des matériaux tels que l'énergie d'activation nécessaire pour la rupture d’une liaison chimique à champ nul et le moment dipolaire des liaisons dans les matériaux testés. En utilisant ces paramètres microscopiques nous avons effectué tout au long de ce travail des simulations physiques pour comprendre les dynamiques de l’opération de forming ainsi que les mécanismes physiques impliqués pendant les opérations du dispositif mémoire. Deuxièmement, nous avons étudié l'immunité aux rayonnements de la RRAM à base de HfO2 pour les applications spatiales. Nos dispositifs RRAM ont été exposés à une énergie de 266 MeV d'ions lourds d'iode. Des analyses pré- et post-exposition ont été effectuées sur les états de la mémoire et les tensions de programmation pour étudier les effets de l'irradiation sur les caractéristiques du dispositif mémoire.Dans la partie des dispositifs d’accès, nous avons évalué deux types différents des sélecteurs. Une forte non-linéarité dans les caractéristiques courant / tension est obligatoire pour effectuer une lecture précise et une écriture à faible consommation. Dans le premier dispositif étudié, la sélectivité est introduite en ajoutant une couche d'oxyde dans l’empilement mémoire et qui agit comme une barrière tunnel. Le principal avantage de cette méthode est la facilité d’intégration de la barrière tunnel, par contre elle souffre d'une faible sélectivité (~ 10) et d'un faible courant de programmation qui dégrade la rétention de données. Deuxièmement, on a co-intégré avec l’RRAM un sélecteur OTS et le dispositif 1S1R a été entièrement caractérisé. Le sélecteur OTS offre une plus grande sélectivité par rapport à la barrière tunnel avec les possibilités d'augmenter fortement cette sélectivité par l'ingénierie des matériaux chalcogénures. Plus de 106 cycles de lecture ont été obtenu pour les dispositifs 1S1R en utilisant une stratégie de lecture innovante que nous avons suggérée pour éviter les lectures perturbatrices et réduire la consommation d'énergie.