Thèse soutenue

Contribution à la conception et réalisation d’un insert supraconducteur haute température critique pour l’obtention de champ magnétique intense

FR  |  
EN
Auteur / Autrice : Tara Benkel
Direction : Pascal Tixador
Type : Thèse de doctorat
Discipline(s) : Genie electrique
Date : Soutenance le 16/02/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie électrique (Grenoble)
Jury : Président / Présidente : Eric Beaugnon
Examinateurs / Examinatrices : Pierre Védrine, Arnaud Badel, Xavier Chaud
Rapporteurs / Rapporteuses : Bernhard Holzapfel, Marco Breschi

Résumé

FR  |  
EN

Les récents progrès des supraconducteurs à haute température critique (SHTC) rendent ces matériaux très prometteurs pour les applications de grande envergure. Ils montrent des propriétés stupéfiantes, particulièrement à très basse température où ils sont capables de transporter des courants extrêmement élevés. Ces conducteurs sont construits sur un substrat en alliage de nickel qui leurs permettent de supporter des efforts mécaniques considérables. Pour ces raisons, les SHTC sont à présent au cœur de nombreux projets pour bâtir une nouvelle génération d’aimants produisant des champs intenses. Ce travail est mené dans le cadre du projet Nougat dont l’objectif est la conception d’un insert générant 10 T à l’intérieur d’un aimant plus grand de 20 T. Malgré leurs remarquables propriétés, les conducteurs SHTC montrent d’importantes inhomogénéités de performance ce qui, ajouté à leur forte capacité calorifique, peut provoquer des échauffements très localisés. La transition locale du matériau vers un état dissipatif est difficile à détecter notamment à cause de la lente propagation de l’évènement. Le signal de transition risque donc d’être noyé dans le bruit de mesure et être à l’origine de dommages sévères voir irréversibles du conducteur. Pour répondre à ce problème, des électro-aimants sont fabriqués en remplaçant l’isolation électrique par un ruban métallique. Ces aimants sont appelées Bobines Métal-Isolée (BMI). Dans cette configuration et dans le cas spécifique d’une inhomogénéité sur le conducteur, le courant court-circuite le défaut en passant sur la spire suivante ce qui permet d’empêcher la destruction du bobinage. Cependant, dans ce type de bobinage, la stabilité et la linéarité du champ magnétique généré peut être un problème et les dynamiques lentes de ce type de bobine les empêchent de prétendre à être utilisé pour certaines applications. Pour des raisons pratiques, le prototype final du projet Nougat sera construit avec un bobinage métalliquement isolé mais le travail mené ici se concentre sur les bobines électriquement isolées, plus particulièrement l’étude de la transition dans le bobinage afin d’identifier des possibilités de protection fiables. Quelques résultats d’échantillons BMI sont cependant présentés pour comparaison. Dans un premier temps, les contraintes générales de conception de l’insert NOUGAT sont définies, principalement les exigences pour le conducteur et les calculs préliminaires de performance. Cette étude souligne le besoin de caractériser le conducteur SHTC sous haut champ et à basse température, dans des conditions similaires à celles du fonctionnement final du prototype d’insert. Dans un second temps, cette caractérisation expérimentale d’échantillons courts est implémentée dans un modèle pour simuler le comportement de bobines pour la construction d’aimants. L’objectif de ce modèle est d’étudier le départ de transition et sa propagation dans le bobinage. Une des particularités du modèle est la simulation de l’entièreté du bobinage dans le but de prendre en compte les inhomogénéités de performance du conducteur, dont les mesures en continu sont fournies à 77 K en champ propre par les constructeurs. Le dernier axe de ce travail est l’étude de plusieurs échantillons bobinés pour permettre notamment la comparaison entre bobinage isolé électriquement et métalliquement. Leurs comportements électrique, mécanique et thermique sont examinés ainsi que les problèmes de couplage dus à la présence d’un aimant extérieur. Les résultats expérimentaux sont comparés aux calculs préliminaires ainsi qu’aux simulations de modèle. Un protocole expérimental est également proposé pour évaluer les performances d’une bobine sans risque et est testé avec succès.