Thèse soutenue

Méthodes statistiques de reconstruction tomographique spectrale pour des systèmes à détection spectrométrique de rayons X

FR  |  
EN
Auteur / Autrice : Pierre-Antoine Rodesch
Direction : Florence Forbes
Type : Thèse de doctorat
Discipline(s) : Mathématiques et informatique
Date : Soutenance le 09/10/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Jean Kuntzmann (Grenoble) - Département d'électronique et d'instrumentation nucléaire (Saclay)
Jury : Président / Présidente : Laurent Desbat
Examinateurs / Examinatrices : Francis Verdun, Xavier Rondeau
Rapporteurs / Rapporteuses : Valérie Kaftandjian, Charles Soussen

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La tomographie à rayons X est une technologie d’imagerie en trois dimensions. Elle se base sur la transmission de rayons X à travers l’objet d’étude. Elle est non destructive mais néanmoins irradiante. Cette technique de visualisation est utilisée principalement dans trois domaines : le diagnostic médical, le contrôle non destructif (détection de défauts dans des pièces industrielles de haute performance) et la sécurité (contrôles aéroportuaires des bagages). Les récentes avancées technologiques dans le domaine des détecteurs spectrométriques de rayons X ouvrent des perspectives d’amélioration de cette technique d’imagerie dans ses divers domaines d’application. Nous avons développé une nouvelle méthode reconstruction statistique appelée MLTR-ONE-STEP qui permet de reconstruire la variabilité énergétique du coefficient linéaire d’atténuation de l’objet étudié. Cette approche est dite « one-step » car elle reconstruit directement le volume final à partir des mesures brutes issues de détecteurs spectrométriques.Les phénomènes physiques au sein du détecteur provoquent une distorsion énergétique du spectre d’atténuation qui a été prise en compte lors de la reconstruction. La méthode utilisée s’inscrit dans le cadre bayésien et maximise la log-vraisemblance du modèle tout en prenant en compte de l’a priori spatial sur le volume reconstruit. L’objectif de la méthode est l’amélioration de la qualité de l’image finale (réduction des artefacts et niveau de bruit) et la quantification des matériaux présents. Nous avons étudié dans le cadre de données simulées l’influence des paramètres de régularisation sur la reconstruction. En pratique, le détecteur de rayon X étudié classe les photons incidents en 64 canaux. Ils sont ensuite regroupés en un nombre de canaux plus faible (2 à 25) et l’influence de ce regroupement a été étudiée. La reconstruction MLTR-ONE-STEP a ensuite été testée sur des données expérimentales regroupées en 12 canaux.